
MOOS
——Mission Orientating Suite

刘宏坤

2

Introduction

Using the MOOS

Foundation

Key MOOS Process

1
2
3
4

Introduction1

• MOOS (pronounced “moose”) is an umbrella
term applying to a set of communicating
applications.

• “MOOS” refers to a suite of libraries and
executables designed and proven to run a field
robot in sub-sea and land domains.

• The heart of MOOS are its communications API
and Library.

Free tools: WordPress, Blogger but make sure your URL is http://blog.tedallas.org or http://www.tedallas.org/blog

http://blog.tedallas.com/
http://www.tedallas.org/blog

Foundation2

6

2.1 Topology
MOOS has a star-like topology. Each application
within a MOOS community has a connection to a
single “MOOS Database” (called MOOSDB) that lies
at the heart of the software suite.

7

2.2 Message Content
The communications API in MOOS allows data to
be transmitted between MOOSDB and a client.
MOOS only allows for data to be sent in string or
double form. Data is packed into messages
(CMOOSMsg class).

8

2.3 Communnications Mechanics
Each client has a connection to the DB. This
connection is made on the client side by
instantiating a class provided in the core MOOSLIB
library called CMOOSCommClient . Using the
CMOOSCommClient each application can:
1. Publish data – issue a notification on named
data.
2. Register for notifications on named data.
3. Collect notifications on named data.

Using The MOOS3

11

3.1 MOOSLib

The primary role of MOOSLib is to contain all the
communications components used both by the
MOOSDBitself and CMOOSCommClient objects
owned and used by client applications.

12

3.1.1.1 CMOOSApp

Perhaps the most important class exposed from
the library is CMOOSApp. This class
should be used as a base class for all MOOS
applications. It provides along with other
things:

13

3.1.1.1 CMOOSApp

1. Management and configurations of a
CMOOSCommClient object
2.Tools for reading configuration parameters
(using a file reading tool exported from
MOOSGenLib)
3.Timing control of the main thread of the
application and an additional communications
thread.

14

3.1.1.1 CMOOSApp
4.Virtual functions that can be overloaded to
perform specific actions when:
a. New mail (notifications) arrives
b. The default work of the application should
occur
c. The client connects to the MOOSDB
d. The client disconnects from the server
e. The application is about to start

15

3.1.1.2 A First Worked Example

So let us use CMOOSApp procedure is as follow to
build an new applications:
1. Make a new ”main.cpp”.
2. Make a new class derived class from
CMOOSApp.
3. In main() make an instance of this class.
4. Call ::Run() on this object.

16

3.1.1.2 A First Worked Example
As needs dictate overload the following virtual
functions: ::Iterate() ,::OnNewMail(),
::OnConnectToServer(),::OnStartup()

17

3.1.1.2 A First Worked Example
OnStartUp
This function is called by CMOOSApp::Run just
before it enters into its own “forever-loop”. This is
the spot that you would populate with
initialisation code, and read configuration
parameters (including those that modify the
default behaviour of the CMOOSApp base class)
from file.

18

3.1.1.2 A First Worked Example
Iterate
By overriding the CMOOSApp::Iterate function in a
new derived class, the author creates a function
from which he or she can orchestrate the work
that the application is tasked with doing. The
iterate function is automatically called by the base
class periodically and so it makes sense to execute
one cycle of the controller code from this “Iterate ”
function.

19

3.1.1.2 A First Worked Example
OnNewMail
This function is called when some other
process has posted data that you have previously
declared an interest in The mail arrives in the form
of a list of CMOOSMsg objects . The programmer
is free to iterate over this collection examining
who sent the data,what it pertains to, how old it is,
whether or not it is string or numerical data
and to act / process the data accordingly.

20

3.1.1.2 A First Worked Example
OnConnectToServer
It is actually a callback from a thread in the
instance CMOOSCommsObject m_Comms
possessed by CMOOSApp. The callback occurs
whenever contact has been made with the
MOOSDB. This is one of two places where the
programmer is advised to call m_Comms.Register
to tell the MOOSDB that we want to be sent mail if
any other process posts data relating to a
particular variable.

21

3.1.1.2 A First Worked Example

22

3.1.2 CMOOSInstrument
The class CMOOSInstrument is another important
base class. It is intended to simplify the writing of
applications interacting with hardware via a single
serial port. The class extends CMOOSApp with
utilities to manage and set up a platform-
independent serial port . The serial port can be
configured to be asynchronous and receive
unsolicited streaming data or to be synchronous
and perform blocking read and writes.

23

3.2 MOOSGenLib
The library MOOSGenLib is a tool chest. It contains
utilities and classes used throughout MOOS. In
particular it provides:
• Platform-independent serial ports
• Thread safe configuration reading tool –
CMOOSMissionFileReader.
• String manipulation/parsing tools.
• Geodesy tools.
• debug statement tools - MOOS equivalent of
printf

24

3.2.1 Utility Functions

MOOSGenLib contains a host of utility
functions that are described below. These
functions are ubiquitous within MOOS and should
not be substituted with local version producing
the same functionality.

25

3.2.1 Utility Functions
MOOSFormat
The MOOS version of sprintf. It returns a
formatted std::string object.
MOOSTrace
The MOOS equivalent of printf printing a formatted
string to the console.
MOOSGetTimeStampString
Returns a time/date string formatted in the MOOS
convention - useful for naming temporary local files
for development purposes etc.
MOOS_ANGLE_WRAP
Wraps All angles (in radians) to be with ±π - forgetting
to wrap angles can cause woe.

26

3.2.1 Utility Functions
MOOSGetValFromString
 Extracts named token=val pairs from a string. For
example: name=AUV1,pose=[3x1]{2,3,4}
MOOSTime
Returns the current time in decimal seconds (a
double) for the current process. All connected
processes will show the same time even if their
respective machine clocks differ. This is achieved by
deducing a client correction during initial handshaking
with the MOOSDB.
MOOSPause
Pauses the current thread (not process) for a specified
number of milliseconds.

Key MOOS
Process4

28

4.1 Naming Conventions
Process Naming

29

4.1 Naming Conventions
Varible Naming
If a sensor, managed by a process called iSensor,
measures one of these quantities then the name
under which the data should be published has the
format SENSOR_CATEGORY. This is best highlighted
with a few examples:
• iGPS measures X and Y position. It publishes GPS_X
and GPS_Y.
• iDepth measures depth. It publishes DEPTH_DEPTH.
• iLBL measures range and depth. It publishes LBL_
DEPTH and LBL_TOF (time of flight).

30

4.2 Scheduling Communications
 ——pScheduler
SEQUENCESSEQUENCES A looping sequence of messages can be
created and published by pScheduler.
Each element of a sequence is specified in the
configuration block with a line:
SEQUENCE = PUBLISH NAME @ VALUE : TIME OFFSET .

31

4.2 Scheduling Communications
 ——pScheduler
TIMERSTIMERS A “timer” allows a variable to be written to
the database repetitively. A timer can be started and
stopped by publication (by some other application) of
user specified variables. The scheduler can also be
told to derive the value of the periodic variable from
another MOOS variable, which, if arrives in the
Scheduler’s mail box, overrides the initial value.

32

4.2 Scheduling Communications
 ——pScheduler

33

4.2 Scheduling Communications
 ——pScheduler
RESPONSES RESPONSES The last competency is one of
responding to the publication of one variable with the
publication of one or more different variables. The
syntax is obvious: RESPONSE = STIMULUS VARIABLE
:RESPONSE.VARIABLE@ VALUE,RESPONSE VARIABLE2
@ VALUE,..... Here STIMULUS VARIABLE is the name of
the variable we wish pScheduler to respond to, and
afterthe colon comes a command-separated list of
response variables with the values they should
contain.

34

4.2 Scheduling Communications
 ——pScheduler

35

THANK
YOU

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 27
	幻灯片 35

