郑海永

zhenghaiyong@gmail.com

http://vision.ouc.edu.cn/~zhenghaiyong/courses/

中国海洋大学 信息科学与工程学院 电子工程系

目录I

- 1 通信电子电路
 - 课程信息
- 2 通信
 - 发展史
- 3 通信系统
 - 信道
 - 无线电波
 - 调制的通信系统
 - 本课程的主要内容

内容提要I

- 通信电子电路
 - 课程信息
- 2 通信
 - 发展史
- 3 通信系统
 - 信道
 - 无线电波
 - 调制的通信系统
 - 本课程的主要内容

内容提要I

- 1 通信电子电路
 - 课程信息
- 2 通信
 - 发展史
- 3 通信系统
 - 信道
 - 无线电波
 - 调制的通信系统
 - 本课程的主要内容

①初印象

通信电子电路之初印象?

通信电子电路之初印象?

- 日常生活
- 目的意义
- 学习价值

- 高等数学:傅立叶变换、拉氏变换、幂级数分析法、贝塞尔函数等。
- ② 电路原理:电容电感元件、串并联谐振电路等。
- ◎ 模拟电子技术: 三极管工作特性、基本放大电路和 LC、RC 晶体振荡器等。
- 数字电子技术:方波振荡器等。

- 高等数学:傅立叶变换、拉氏变换、幂级数分析法、贝塞尔函数等。
- ② 电路原理:电容电感元件、串并联谐振电路等。
- ◎ <u>模拟电子技术</u>: 三极管工作特性、基本放大电路和 LC、RC 晶体振荡器等。
- 数字电子技术:方波振荡器等。

- 高等数学:傅立叶变换、拉氏变换、幂级数分析法、贝塞尔函数等。
- ② 电路原理:电容电感元件、串并联谐振电路等。
- 模拟电子技术: 三极管工作特性、基本放大电路和 LC、RC 晶体振荡器等。
- ◎ 数字电子技术:方波振荡器等。

- 高等数学:傅立叶变换、拉氏变换、幂级数分析法、贝塞尔函数等。
- ② 电路原理:电容电感元件、串并联谐振电路等。
- ◎ 模拟电子技术: 三极管工作特性、基本放大电路和 LC、RC 晶体振荡器等。
- 数字电子技术:方波振荡器等。

② 同期课程

- 信号与系统
- 信息论
- 自动控制原理
- 电磁场

②后续课程

- 通信原理
- ② 现代通信系统
- ◎ 移动通信技术
-

②相关中文慕课

- 模拟电子技术基础,清华大学自动化系,华成英等。
- 电路原理,清华大学电机系,于歆杰等。
- 电子电路, 北京大学, 陈江。
- 电路分析基础,北京邮电大学,巍海。
- 电路, 西安交通大学, 罗先觉等。
- 微电子电路基础,北京理工大学,桂小琰。

②相关中文慕课


- 模拟电子技术基础、清华大学自动化系、华成英等。
- 电路原理,清华大学电机系,于歆杰等。
- 电子电路, 北京大学, 陈江。
- 电路分析基础, 北京邮电大学, 巍海。
- 电路, 西安交通大学, 罗先觉等。
- 微电子电路基础, 北京理工大学, 桂小琰。
- 学堂在线 xuetangX + edX
- 中国大学 MOOC(爱课程网+网易云课堂) + Coursera
- 东西部高校课程共享联盟─智慧树 ← 中国海洋大学
- 网易云课堂 爱课程网 果壳网 MOOC 学院
-

②相关公开课

- <u>通信电子电路</u>, 中国矿业大学信电学院多媒体通信与控制研究室, 于洪珍等, 国家精品课程。
- 电路原理, 清华大学电机系, 电路原理教学组。
- 6.776 High Speed Communication Circuits, MIT OCW.
- 6.976 High Speed Communication Circuits and Systems, MIT OCW.
- EE142 Integrated Circuits for Communications, UC Berkeley.

为什么要学习电路?

为什么要学习电路?

陈江 电子电路北京大学

为什么要学习电路?

为什么要学习电路?

- 从学术的观点来看
 - 电路是Electrical Engineering的基础。
 - 电路是Computer Science的基础。
- 从实际情况来看
 - 电路原理是许多高级课程的先修课程。
 - 熟练掌握电路原理对现实生活有帮助。

Principles of Electric Circuits Lecture 1 Tsinghua University 2013

为什么要学习电路?

什么是EECS?

国内习惯的归类与统称	各学科领域		国外习惯的归类与统称
电气工程	电力工程		
信息科学与技术 (或电子信息科学与技术)	控制工程		电气工程
	通信工程		
	电子工程		
	•••••		
	计算机科:	·学与技术	计算机科学
			计算机工程
统称: 电气工程与信息科学		统称: 电气工程与计算机科学	
(或电气电子信息科学)		(简称EECS、ECE)	

为什么要学习电路?

电路原理和智能手机

Principles of Electric Circuits Lecture 1 Tsinghua University 2013

为什么要学习电路及通信电子电路?

电路原理和智能手机

Principles of Electric Circuits Lecture 1 Tsinghua University 2013

为什么要学习电路?

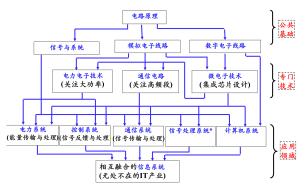
电路原理和Google Maps/Earth

Principles of Electric Circuits Lecture 1 Tsinghua University 2013

于歆杰 电路原理清华大学电机系

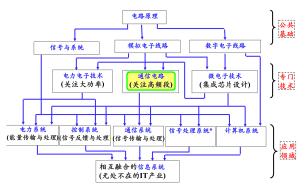
13

为什么要学习电路及通信电子电路?


电路原理和Google Maps/Earth

Principles of Electric Circuits Lecture 1 Tsinghua University 2013

为什么要学习电路及通信电子电路?


电路原理课程的后续课程

*: 指各类信号处理课程,包括某些专业的专门课程(如生物医学工程、核电子学等) Principles of Electric Circuits Lecture 1 Tsinghua University 2013

为什么要学习电路及通信电子电路?

电路原理课程的后续课程

*: 指各类信号处理课程,包括某些专业的专门课程(如生物医学工程、核电子学等) Principles of Electric Circuits Lecture 1 Tsinghua University 2013

如何学好电路?

- 重视概念:"走心"
- ❷ 电路是通过知道自己如何做错学会如何做对的:

"一听就懂,一做就错!"

- 于洪珍.
 通信电子电路.
 清华大学出版社,北京.
- 于洪珍. 通信电子电路教学参考书. 清华大学出版社,北京.

[参考书电子版]

SPICE Simulation Program with Integrated Circuit Emphasis

Multisim PSPICE Ngspice HSPICE LTSpice Telspice SpiceOPUS PyOPUS

spice3f5 XSPICE · · · · · ·

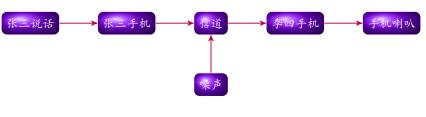
Matlab/Simulink

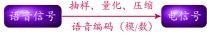
5 通信

传递各种信息(语音、音乐、文本、图像和数据等)

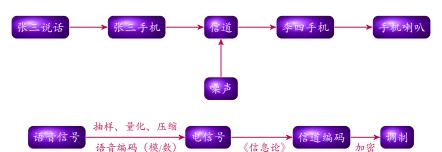
张三说话

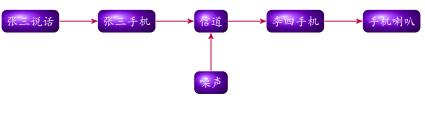
5通信




5通信

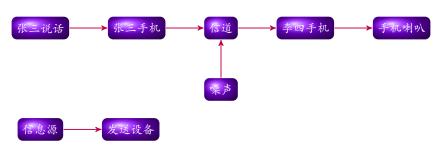
传递各种信息(语音、音乐、文本、图像和数据等)



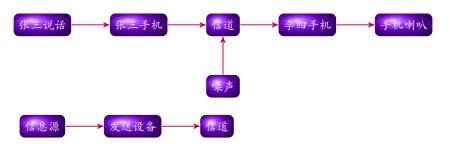

语音信号

传递各种信息(语音、音乐、文本、图像和数据等)

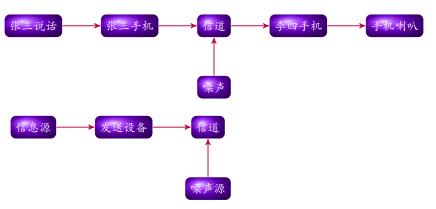
语音信号


电信号

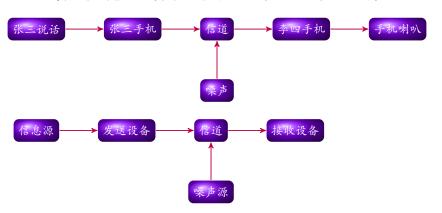
传递各种信息(语音、音乐、文本、图像和数据等)


信息源

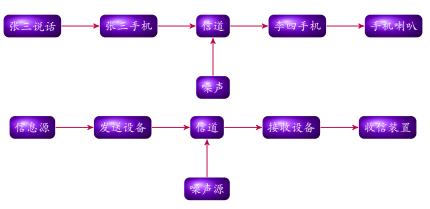
信息源 要传送的原始信息,如文字、数据、语音、音乐、图像等。


发送设备 将电信号变换为适应于信道传输特性的信号的装置。

传递各种信息(语音、音乐、文本、图像和数据等)


信道 传输信息 (或信号) 的通道, 有线信道和无线信道。

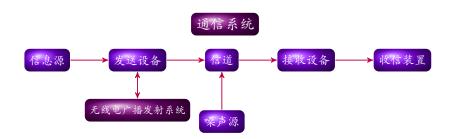
传递各种信息(语音、音乐、文本、图像和数据等)

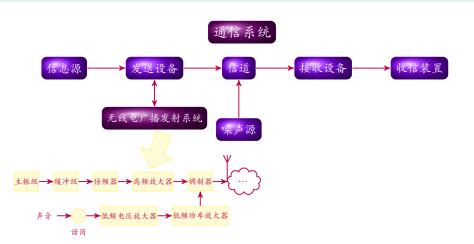

噪声源 信道中的噪声及分散在通信系统中其他各处的噪声。

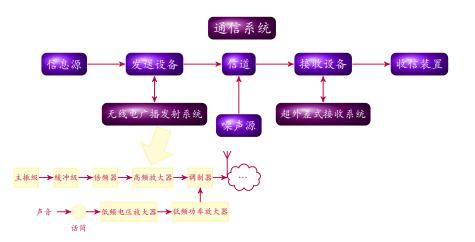
传递各种信息(语音、音乐、文本、图像和数据等)

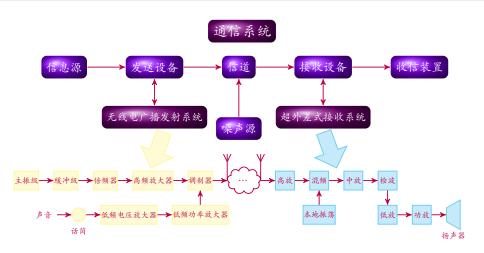
接收设备 将接收到的信号恢复成与发送设备输入信号相一致的装置。

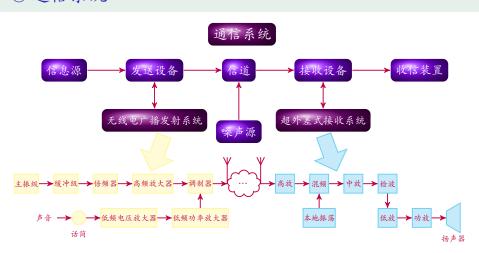
传递各种信息(语音、音乐、文本、图像和数据等)

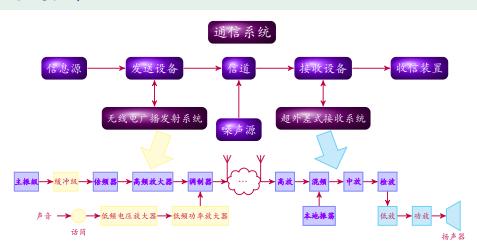



收信装置 将电信号还原成原来的信息。


⑥ 通信系统


⑥ 通信系统





⑥ 通信系统

通信系统是指实现通信过程的全部技术设备和信道的总和

通信系统是指实现通信过程的全部技术设备和信道的总和

教学安排

主要内容	预计学时(共48学时)
课程主要内容与通信和调制的通信系统(Chap1)	2
高频电路基础和小信号调谐放大器(Chap2)	6
调谐功率放大器(Chap3)	8
正弦波振荡器(Chap4)	6
振幅调制与解调(Chap5)	8
变频器(Chap7)	4
角度调制与解调(Chap6)	8
锁相环路与其他反馈控制电路(Chap8)	2
总结与项目报告	4

⑦《通信电子电路》

通信

电子电路

实现通信

的电子电路

⑦《通信电子电路》

研究实现**通信**(无线通信系统)的**电子电路** 基本概念、基本原理、基本电路和基本分析方法 研究实现通信 (无线通信系统) 的电子电路基本概念、基本原理、基本电路和基本分析方法

重点和难点

- 高频
- 非线性

研究实现**通信**(无线通信系统)的**电子电路** 基本概念、基本原理、基本电路和基本分析方法

重点和难点

- 高频
- 非线性

高频电路是通信系统(特别是无线通信系统)的基础,是无线通信设备的重要组成部分。

⑦《通信电子电路》

研究实现**通信**(无线通信系统)的电子电路 基本概念、基本原理、基本电路和基本分析方法

重点和难点

- 高频
- 非线性

高频电路是通信系统(特别是无线通信系统)的基础,是无线通信设备 的重要组成部分。

《高频电子线路》

⑦课程特点

- 理论性
- ② 工程性
- ⑤ 实践性
- 先进性

⑦课程特点

- 理论性
- ② 工程性
- ⑤ 实践性
- 先进性

内容提要I

- 1 通信电子电路
 - 课程信息
- 2 通信
 - 发展史
- 3 通信系统
 - 信道
 - 无线电波
 - 调制的通信系统
 - 本课程的主要内容

内容提要I

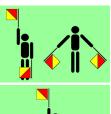
- 1 通信电子电路
 - 课程信息
- 2 通信
 - 发展史
- 3 通信系统
 - 信道
 - 无线电波
 - 调制的通信系统
 - 本课程的主要内容

①原始通信

有什么?

- 烽火狼烟
- ② 飞鸽传信

- 烽火狼烟
- ② 飞鸽传信
- 3 驿马邮递



- 烽火狼烟
- ② 飞鸽传信
- ◎ 驿马邮递
- 击鼓鸣金

①原始通信

- 烽火狼烟
- ② 飞鸽传信
- ◎ 驿马邮递
- 击鼓鸣金

①原始通信

- 烽火狼烟
- ② 飞鸽传信
- 3 驿马邮递
- 击鼓鸣金
- 各种旗语

①原始通信

- 烽火狼烟
- ② 飞鸽传信
- ◎ 驿马邮递
- 击鼓鸣金
- **6**
- ◎ 各种旗语

视觉和听觉

②有线通信

靠什么?

1837 年 美国**莫尔斯** (F.B.Morse): 电磁式电报机 (莫尔斯电码)。 1875 年 美国**贝尔** (A.G.Bell): 取得电话机专利。 1837年 美国**莫尔斯** (F.B.Morse): 电磁式电报机 (莫尔斯电码)。

1875年 美国贝尔 (A.G.Bell):取得电话机专利。

普通导线、同轴电缆、双绞线、光纤、光缆等

③ 无线通信

靠什么?

1864年 英国**麦克斯韦**(I.C.Maxwell): 电磁波的存在设想。

- 1888年 德国赫兹 (H.Hertz):证实电磁波的存在。
- 1895年 俄国波波夫、意大利马可尼:无线电报。
- 1904年 英国弗莱明:二极管。
- 1906年 美国弗森登:无线电广播。
- 1907年 美国德福莱斯特:真空三极管;美国阿姆斯特朗:超外差 式接收装置。
- 1920年 美国康拉德:匹兹堡世界上第一家商业无线电广播电台。
- 1924年 第一条短波通信在瑙恩和布宜诺斯艾利斯之间建立。
- 1933年 法国克拉维尔建立了英法之间第一条商用微波无线电线路
- 60年代 集成电路出现。

- 1864年 英国**麦克斯韦**(I.C.Maxwell):电磁波的存在设想。
- 1888年 德国赫兹 (H.Hertz):证实电磁波的存在。
- 1895年 俄国波波夫、意大利马可尼:无线电报。
- 1904年 英国弗莱明:二极管。
- 1906年 美国弗森登:无线电广播。
- 1907年 美国德福莱斯特:真空三极管;美国阿姆斯特朗:超外差 式接收装置。
- 1920年 美国康拉德:匹兹堡世界上第一家商业无线电广播电台。
- 1924年 第一条短波通信在瑙恩和布宜诺斯艾利斯之间建立。
- 1933年 法国克拉维尔建立了英法之间第一条商用微波无线电线路
- 60年代 集成电路出现。

- 1864年 英国麦克斯韦 (J.C.Maxwell): 电磁波的存在设想。
- 1888年 德国赫兹 (H.Hertz):证实电磁波的存在。
- 1895年 俄国波波夫、意大利马可尼:无线电报。
- 1904年 英国弗莱明:二极管。
- 1906年 美国弗森登:无线电广播。
- 1907年 美国德福莱斯特:真空三极管;美国阿姆斯特朗:超外差 式接收装置。
- 1920年 美国康拉德:匹兹堡世界上第一家商业无线电广播电台。
- 1924年 第一条短波通信在瑙恩和布宜诺斯艾利斯之间建立
- 1933年 法国克拉维尔建立了英法之间第一条商用微波无线电线路
- 60年代 集成电路出现。

- 1864年 英国麦克斯韦 (J.C.Maxwell): 电磁波的存在设想。
- 1888年 德国赫兹 (H.Hertz):证实电磁波的存在。
- 1895年 俄国波波夫、意大利马可尼:无线电报。
- 1904年 英国弗莱明:二极管。
- 1906年 美国弗森登:无线电广播。
- 1907年 美国德福莱斯特:真空三极管;美国阿姆斯特朗:超外差 式接收装置。
- 1920年 美国康拉德:匹兹堡世界上第一家商业无线电广播电台。
- 1924年 第一条短波通信在瑙恩和布宜诺斯艾利斯之间建立。
- 1933年 法国克拉维尔建立了英法之间第一条商用微波无线电线路。
- 60年代 集成电路出现。

- 1864年 英国**麦克斯韦**(J.C.Maxwell):电磁波的存在设想。
- 1888年 德国赫兹 (H.Hertz):证实电磁波的存在。
- 1895年 俄国波波夫、意大利马可尼:无线电报。
- 1904年 英国弗莱明:二极管。
- 1906年 美国弗森登:无线电广播。
- 1907年 美国德福莱斯特:真空三极管;美国阿姆斯特朗:超外差式接收装置。
- 1920年 美国康拉德:匹兹堡世界上第一家商业无线电广播电台。
- 1924年 第一条短波通信在瑙恩和布宜诺斯艾利斯之间建立
- 1933年 法国克拉维尔建立了英法之间第一条商用微波无线电线路。
- 60年代 集成电路出现。

- 1864年 英国**麦克斯韦**(J.C.Maxwell):电磁波的存在设想。
- 1888年 德国赫兹 (H.Hertz):证实电磁波的存在。
- 1895年 俄国波波夫、意大利马可尼:无线电报。
- 1904年 英国弗莱明:二极管。
- 1906年 美国弗森登:无线电广播。
- 1907年 美国德福莱斯特:真空三极管;美国阿姆斯特朗:超外差式接收装置。
- 1920年 美国康拉德:匹兹堡世界上第一家商业无线电广播电台。
- 1924年 第一条短波通信在瑙恩和布宜诺斯艾利斯之间建立
- 1933年 法国克拉维尔建立了英法之间第一条商用微波无线电线路。
- 60年代 集成电路出现。

- 1864年 英国**麦克斯韦**(J.C.Maxwell):电磁波的存在设想。
- 1888年 德国赫兹 (H.Hertz):证实电磁波的存在。
- 1895年 俄国波波夫、意大利马可尼:无线电报。
- 1904年 英国弗莱明:二极管。
- 1906年 美国弗森登:无线电广播。
- 1907年 美国德福莱斯特:真空三极管;美国阿姆斯特朗:超外差式接收装置。
- 1920年 美国康拉德:匹兹堡世界上第一家商业无线电广播电台。
- 1924年 第一条短波通信在瑙恩和布宜诺斯艾利斯之间建立。
- 1933 年 法国克拉维尔建立了英法之间第一条商用微波无线电线路。 60 年代 集成电路出现。

- 1864年 英国**麦克斯韦**(J.C.Maxwell):电磁波的存在设想。
- 1888年 德国赫兹 (H.Hertz):证实电磁波的存在。
- 1895年 俄国波波夫、意大利马可尼:无线电报。
- 1904年 英国弗莱明:二极管。
- 1906年 美国弗森登:无线电广播。
- 1907年 美国德福莱斯特:真空三极管;美国阿姆斯特朗:超外差 式接收装置。
- 1920年 美国康拉德:匹兹堡世界上第一家商业无线电广播电台。
- 1924年 第一条短波通信在瑙恩和布宜诺斯艾利斯之间建立。
- 1933年 法国克拉维尔建立了英法之间第一条商用微波无线电线路。
- 60年代 集成电路出现。

- 1864年 英国**麦克斯韦**(J.C.Maxwell):电磁波的存在设想。
- 1888年 德国赫兹 (H.Hertz):证实电磁波的存在。
- 1895年 俄国波波夫、意大利马可尼:无线电报。
- 1904年 英国弗莱明:二极管。
- 1906年 美国弗森登:无线电广播。
- 1907年 美国德福莱斯特:真空三极管;美国阿姆斯特朗:超外差式接收装置。
- 1920年 美国康拉德:匹兹堡世界上第一家商业无线电广播电台。
- 1924年 第一条短波通信在瑙恩和布宜诺斯艾利斯之间建立。
- 1933年 法国克拉维尔建立了英法之间第一条商用微波无线电线路。
- 60年代 集成电路出现。

电磁波

- 无线电技术 (广播、移动通信等)
- 图像传播技术(电视、激光器、雷达等)
- 信息超远控制技术(遥控、遥测、 遥感等)
- 射频技术 (RFID 等)
-

数学分析方法

- 傅立叶分析
- 拉普拉斯变换
- · Z变换
- 状态方程分析
 -

④ 发展

电磁波

- 无线电技术 (广播、移动通信等)
- 图像传播技术(电视、激光器、雷达等)
- 信息超远控制技术(遥控、遥测、 遥感等)
- 射频技术 (RFID 等)
-

数学分析方法

- 傅立叶分析
- 拉普拉斯变换
- Z 变换
- 状态方程分析
 -

4发展

电磁波

- 无线电技术(广播、移动通信等)
- 图像传播技术(电视、激光器、雷 达等)
- 信息超远控制技术(遥控、遥测、 遥感等)
- 射频技术(RFID等)

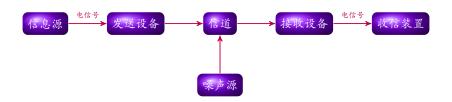
数学分析方法

- 傅立叶分析
- 拉普拉斯变换
- Z变换
- 状态方程分析

电子技术 |+| 通信技术 |+| 其他技术 |⇒| 数字化信息时代

交通与通信

交通与通信


交通中的"公路"、"天空"、"水"、"宇宙空间"、...

- 通信中也需要"运载工具"吗? 如果需要,那么
- ② 什么是通信中的"运载工具"?

内容提要I

- 1 通信电子电路
 - 课程信息
- 2 通信
 - 发展史
- 3 通信系统
 - 信道
 - 无线电波
 - 调制的通信系统
 - 本课程的主要内容

通信系统

信息源 要传送的原始信息,如文字、数据、语音、音乐、图像等。 发送设备 将电信号变换为适应于信道传输特性的信号的装置。

信道 传输信息 (或信号) 的通道, 有线信道和无线信道。

噪声源 信道中的噪声及分散在通信系统中其他各处的噪声。

接收设备 将接收到的信号恢复成与发送设备输入信号相一致的装置。 收信装置 将电信号还原成原来的信息。

通信系统

信息源 要传送的原始信息,如文字、数据、语音、音乐、图像等。 发送设备 将电信号变换为适应于信道传输特性的信号的装置。

信道 传输信息 (或信号) 的通道, 有线信道和无线信道。

噪声源 信道中的噪声及分散在通信系统中其他各处的噪声。

接收设备 将接收到的信号恢复成与发送设备输入信号相一致的装置。收信装置 将电信号还原成原来的信息。

内容提要I

- 1 通信电子电路
 - 课程信息
- 2 通信
 - 发展史
- 3 通信系统
 - 信道
 - 无线电波
 - 调制的通信系统
 - 本课程的主要内容

①信道

信道 传输信息 (或信号) 的通道, 有线信道和无线信道。

有线信道 架空明线、电缆、光缆等,例如三网。

无线信道 地球表面的大气层、水、地层及宇宙空间等,例如手机到基站。

①信道

信道 传输信息 (或信号) 的通道, 有线信道和无线信道。 有线信道 架空明线、电缆、光缆等, 例如三网。

无线信道 地球表面的大气层、水、地层及宇宙空间等,例如手机到基站。

信道 传输信息(或信号)的通道,有线信道和无线信道。 有线信道 架空明线、电缆、光缆等,例如三网。 无线信道 地球表面的大气层、水、地层及宇宙空间等,例如手机到 基站。

②通信距离

② 通信距离

有线

- RS232
- RS485
- 双绞线
- 同轴电缆
- 光缆

② 通信距离

有线

- RS232
- RS485
- 双绞线
- 同轴电缆
- 光缆
-

- BlueTooth
- ZigBee
- WiFi
- WiMax
- 3G
- LTE, 4G
- NFC

② 通信距离

有线

- RS232
- RS485
- 双绞线
- 同轴电缆
- 光缆

无线

- BlueTooth
- ZigBee
- WiFi
- WiMax
- 3G
- LTE、4G
- NFC
-

有线通信 电信号依靠导线传送。 无线通信 电信号依靠**电磁波**传送。

内容提要I

- 1 通信电子电路
 - 课程信息
- 2 通信
 - 发展史
- 3 通信系统
 - 信道
 - 无线电波
 - 调制的通信系统
 - 本课程的主要内容

①无线电波的频段划分

频率在几十千赫至几万兆赫的电磁波 \Rightarrow 频段或波段(相对)波长 λ 、频率 f、电磁波传播速度 $c=3\times 10^8 m/s$: $\lambda=cT=\frac{c}{f}$

频率在几十千赫至几万兆赫的电磁波 \Rightarrow 频段或波段(相对)波长 λ 、频率 f、电磁波传播速度 $c=3\times 10^8 m/s$: $\lambda=cT=\frac{c}{f}$

超长波	3 Hz ~ 30 kHz	VLF	音频、电话、数据终端
长波	$30 {\it Hz} \sim 300 {\it kHz}$	LF	导航、信标、电力线通信
中波	300 kHz ~ 3 MHz	MF	AM 广播、业余无线电
短波	$3\sim 30 \mathrm{MHz}$	HF	移动电话、短波广播、业余无线电
超短波	$30\sim300 {\rm MHz}$	VHF	FM广播、TV、导航、移动通信
分米波	$300 \mathrm{MHz} \sim 3 \mathrm{GHz}$	UHF	TV、遥控遥测、雷达、移动通信
厘米波	$3\sim 30 {\rm GHz}$	SHF	微波通信、卫星通信、雷达
毫米波	$30\sim 300 {\rm GHz}$	EHF	微波通信、雷达、射电天文学

①无线电波的频段划分

频率在几十千赫至几万兆赫的电磁波 \Rightarrow 频段或波段(相对)波长 λ 、频率 f、电磁波传播速度 $c=3\times 10^8 m/s$: $\lambda=cT=\frac{c}{f}$

超长波	3 Hz ~ 30 kHz	VLF
长波	$30 {\it Hz} \sim 300 {\it kHz}$	LF
中波	300 kHz ~ 3 MHz	MF
短波	$3\sim 30 \mathrm{MHz}$	HF
超短波	$30\sim 300 \mathrm{MHz}$	VHF
分米波	$300 \mathrm{MHz} \sim 3 \mathrm{GHz}$	UHF
厘米波	$3\sim 30 {\rm GHz}$	SHF
毫米波	$30\sim 300 {\rm GHz}$	EHF

音频、电话、数据终端 导航、信标、电力线通信 AM 广播、业余无线电 移动电话、短波广播、业余无线电 FM 广播、TV、导航、移动通信 TV、遥控遥测、雷达、移动通信 微波通信、卫星通信、雷达 微波通信、雷达、射电天文学 **RFID**

身份证、门票、一卡通等

身份证、门票、一卡通等

低频	$125 \sim 135$ kHz	< 60cm	动物晶片、门禁、停车场
高频	13.56МНz	~ 60 cm	交通卡、门禁
超高频	433МНz	$50 \sim 100 \textit{m}$	医院病患监护
	$860 \sim 960$ MHz	被~10m主~100m	物流
微波	2.45 <i>GHz</i>	被 ~ 1 m 主 ~ 50 m	物流

②无线电波的传播特性

无线电信号的传播方式、传播距离、传播特点等 取决于无线电信号的**频率**和**信道**。

- 不同频段的无线电信号, 其传播特性不同。
- 同一信道对不同频率的信号传播特性不同。
- 地球表面 频率越高, 损耗越严重, 传播距离越短。 电离层 频率越高, 被吸收的能量越小, 穿入也越深。

② 无线电波的传播特性

无线电信号的传播方式、传播距离、传播特点等 取决于无线电信号的**频率**和**信道**。

- 不同频段的无线电信号, 其传播特性不同。
- 同一信道对不同频率的信号传播特性不同。

地球表面 频率越高, 损耗越严重, 传播距离越短。 电离层 频率越高, 被吸收的能量越小, 穿入也越深

无线电信号的传播方式、传播距离、传播特点等 取决于无线电信号的**频率和信道**。

- 不同频段的无线电信号, 其传播特性不同。
- 同一信道对不同频率的信号传播特性不同。

地球表面 频率越高, 损耗越严重, 传播距离越短。 电离层 频率越高, 被吸收的能量越小, 穿入也越深。

无线电信号的传播方式、传播距离、传播特点等 取决于无线电信号的**频率和信道**。

- 不同频段的无线电信号, 其传播特性不同。
- 同一信道对不同频率的信号传播特性不同。

地球表面 频率越高, 损耗越严重, 传播距离越短。

电离层 频率越高,被吸收的能量越小,穿入也越深。

绕射 沿着地球的弯曲表面传播, 地波 (中、长波)。

折射反射 利用电离层折射和反射传播, 天波 (短波)。

直射 从发射天线发出,沿直线传播到接收天线,空间波(超短波)。

无线电信号的传播方式、传播距离、传播特点等 取决于无线电信号的**频率和信道**。

- 不同频段的无线电信号, 其传播特性不同。
- 同一信道对不同频率的信号传播特性不同。

地球表面 频率越高, 损耗越严重, 传播距离越短。 电离层 频率越高, 被吸收的能量越小, 穿入也越深。

绕射	地波	中、长波	< 1.5 MHz
折射反射	天波	中、短波	$1.5 \sim 30 \mathrm{MHz}$
直射	空间波	超短波+	> 30 MHz

③ 无线电传播

只有当天线的尺寸大到可以与信号波长相比拟时,天线才具有较高的辐射效率。

③ 无线电传播

只有当天线的尺寸大到可以与信号波长相比拟时,天线才具有较高的辐射效率。

- 为了减少制造天线的困难
- ② 使所发射的信号不致混淆

只有当天线的尺寸大到可以与信号波长相比拟时,天线才具有较高的辐射效率。

- 为了减少制造天线的困难
- ② 使所发射的信号不致混淆

需要将语音(低频)信号搬移到不同的高频段——**调制传输**

内容提要I

- - 课程信息
- - 发展史
- 通信系统
 - 信道
 - 无线电波
 - 调制的通信系统
 - 本课程的主要内容

①调制传输

基带传输 将从消息变换而来的基带 (低频) 信号直接传送。

调制传输 将从消息变换而来的基带 (低频**调制**) 信号"装载"到载波 (高频) 信号上进行传送。

①调制传输

基带传输 将从消息变换而来的基带 (低频) 信号直接传送。 调制传输 将从消息变换而来的基带 (低频**调制**) 信号 "装载" 到**载波** (高频) 信号上进行传送。

①调制传输

基带传输 将从消息变换而来的基带(低频)信号直接传送。 调制传输 将从消息变换而来的基带(低频**调制**)信号"装载"到**载波** (高频) 信号上进行传送。

调制 在发送端用低频调制信号(例如话音信号)去控制高频载 波信号的幅度(频率或相位)并使其随低频调制信号而变 化形成已调信号。

解调 在接收端从收到的已调信号中把调制信号恢复出来。

基带传输 将从消息变换而来的基带(低频)信号直接传送。 调制传输 将从消息变换而来的基带(低频**调制**)信号"装载"到**载波**

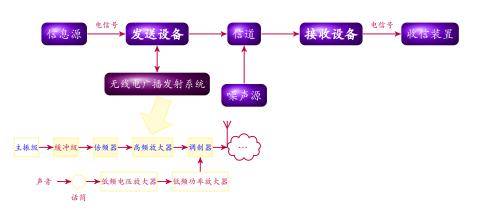
调制传输 将从消息变换而来的基带(低频**调制**)信号"装载"到**载波** (高频)信号上进行传送。

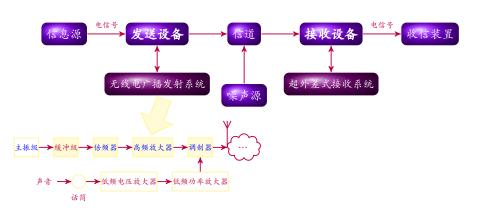
调制 在发送端用低频调制信号(例如话音信号)去控制高频载 波信号的幅度(频率或相位)并使其随低频调制信号而变 化形成已调信号。

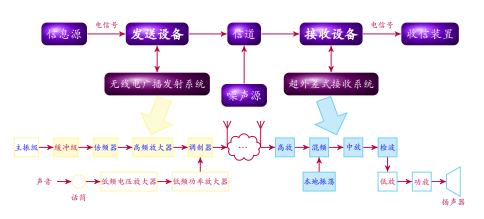
解调 在接收端从收到的已调信号中把调制信号恢复出来。

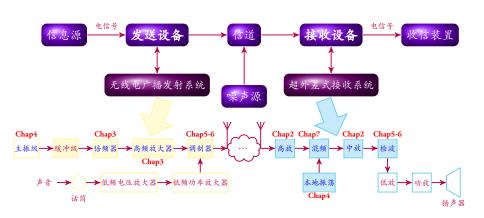
基带传输 将从消息变换而来的基带(低频)信号直接传送。 调制传输 将从消息变换而来的基带(低频**调制**)信号"装载"到**载波** (高频) 信号上进行传送。

调制 在发送端用低频调制信号(例如话音信号)去控制高频载波信号的幅度(频率或相位)并使其随低频调制信号而变化形成已调信号。


解调 在接收端从收到的已调信号中把调制信号恢复出来。


调幅 ⇔ 检波 调频 ⇔ 鉴频 调相 → 调频




发送设备 将电信号变换为适应于信道传输特性的信号的装置。接收设备 将接收到的信号恢复成与发送设备输入信号相一致的装置。

③ 数字通信系统

- 1 通信电子电路
 - 课程信息
- 2 通信
 - 发展史
- 3 通信系统
 - 信道
 - 无线电波
 - 调制的通信系统
 - 本课程的主要内容

- Chap2 谐振回路
- ② Chap2 小信号调谐放大器
- Chap3 调谐功率放大器
 - Map3 倍频器
- 6 Chap4 正弦波振荡器
- Chap5 振幅调制与解调
- D Chap6 角度调制与解调
- Chap7 变频器
- Chap8 锁相环

- Chap2 谐振回路
- ② Chap2 小信号调谐放大器
- Chap3 调谐功率放大器
- Chap3 倍频器
- 6 Chap4 正弦波振荡器
- Chap5 振幅调制与解调
- 🕜 Chap6 角度调制与解调
- Chap7 变频器
 - Map8 锁相环

- 🕦 电阻、电容、电感等无源线性元件
- 🗿 二极管、三极管等有源非线性器件
- 6 LC 谐振回路、基本放大电路、振荡器电路等

- Chap2 谐振回路
- ② Chap2 小信号调谐放大器
- 6 Chap3 调谐功率放大器
- Chap3 倍频器
- 6 Chap4 正弦波振荡器
- ⑥ Chap5 振幅调制与解调
- 🚺 Chap6 角度调制与解调
- Chap7 变频器
- Chap8 锁相环

- 1 电阻、电容、电感等无源线性元件
- ② 二极管、三极管等有源非线性器件
- 3 LC 谐振回路、基本放大电路、振荡器电路等

着重讨论发送设备和接收设备各单元的 工作原理和组成,以及构成发送、接收 设备的各种单元电路的工作原理、典型 电路和分析方法。

- Chap2 谐振回路
- ② Chap2 小信号调谐放大器
- Chap3 调谐功率放大器
- Chap3 倍频器
- 6 Chap4 正弦波振荡器
- € Chap5 振幅调制与解调
- Chap6 角度调制与解调
- Chap7 变频器
 - Chap8 锁相环

- 电阻、电容、电感等无源线性元件
- ② 二极管、三极管等有源非线性器件
- 1C 谐振回路、基本放大电路、振荡器电路等

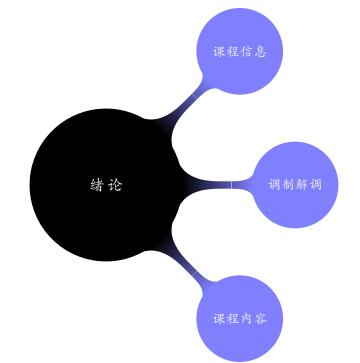
着重讨论发送设备和接收设备各单元的 工作原理和组成,以及构成发送、接收 设备的各种单元电路的工作原理、典型 电路和分析方法。

基本概念、基本原理、基本电路、基本分析方法

关键词

- 高频

作业 在线讨论 课程视频


- ●"电路分析"与"模拟电子技术基础"课本
- ② 查阅基本元器件:无源元件和有源元件
- 无源元件:阻、容、感
- 有源元件:二极管、三极管
- 伏安特性、工作特性、输入特性、输出特性、转移特性、等等特性

作业 在线讨论 课程视频

- ❶"电路分析"与"模拟电子技术基础"课本
- ② 查阅基本元器件:无源元件和有源元件
- 无源元件:阻、容、感
- 有源元件:二极管、三极管
- 伏安特性、工作特性、输入特性、输出特性、转移特性、等等特性

思考 在线讨论

- 无线通信为什么要进行调制?
- ❷ 为什么非线性?线性电路 vs 非线性电路
- あ分什么要高频?低频 vs 高频

