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Enhanced Logical Stochastic Resonance in Synthetic Genetic Networks
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Abstract— In this brief, the concept of logical stochastic resonance
is applied to implement the Set–Reset latch in a synthetic gene net-
work derived from a bacteriophage λ. Clear Set–Reset latch operation
is obtained when the network is only subjected to periodic forcing.
The correct probability of obtaining the desired logic operation first
increases to unity and then decreases as the amplitude of the periodic
forcing increases. In addition, the output logic operation can be easily
morphed by tuning the frequency and the amplitude of the periodic
forcing. At the same time, we indicate that adding moderate periodic
forcing to the background Gaussian noise may increase the length of the
optimal plateau of getting the desired logic operation in genetic regulatory
network. We also point out that robust Set–Reset latch operation can be
obtained using the interplay of periodic forcing and background noise
when the noise strength is lower than what is required.

Index Terms— Genetic network, memory gates, stochastic
resonance.

I. INTRODUCTION

Recently, the phenomenon of logical stochastic resonance (LSR)
has been demonstrated in [1]. This phenomenon is a nonlinear
system driven by weak signals can obtain logic outputs under noisy
background. Furthermore, the logic operation can be switched by
simply morphing the nonlinear characteristics. The LSR affords a
path to the practical implementation of a new generation of computing
systems.

The genetic regulatory network (GRN) can be visualized as
composed of subsets of simple biological components, interconnected
through the input and output signals [2]. GRN plays an important
role in the emerging field of synthetic biology. One defining goal
of synthetic biology is the development of engineering-based
approaches that enable the construction of GRN according to design
specifications generated from computational modeling [3]. Engineers
have yielded an ever-growing number of synthetic biological devices
with different functional capabilities, such as switches [4], oscilla-
tors [5], and amplifiers [6]. Gene regulation is an intrinsically noisy
process, where stability and synchronization of the genetic networks
have been studied by the Lyapunov method and the Lur’e system
approach [7], [8]. Intriguingly, several researchers have applied the
idea of the LSR to the synthetic gene network and obtained interesting
results. AND/OR gate is obtained by an auto-regulatory gene network
in the bacteriophage λ [9]. Hellen et al. [10] verified the noise-
enhanced logic behavior in an electronic analog of a synthetic genetic
network. Xu et al. [11] investigated the LSR phenomenon in synthetic
genetic networks induced by non-Gaussian noise. Sharma et al. [12]
realized logic gates with time-delayed synthetic genetic networks and
showed this delay could either enhance or diminish logic behavior.

Two prerequisites, namely, nonlinearity and noise, are needed to
implement LSR in GRN. Noise can be classified as external noise
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TABLE I
RELATIONSHIP BETWEEN THE TWO INPUTS AND

THE OUTPUT OF SET–RESET LATCH

and internal noise. External noise refers to any disturbance, random
or deterministic forcing. However, all the aforementioned studies are
about the random fluctuated noise. To the best of our knowledge,
studies have not been conducted on whether the GRN system can
obtain the LSR phenomenon when it is subjected to deterministic
forcing and on obtaining consistent memory operation in GRN.
Gupta et al. [13] proposed that the LSR could be obtained in noise-
free bistable system, where the role of noise is taken by periodic
forcing. Kohar et al. [14] demonstrated that the LSR phenomenon
could be strengthened when the system was subjected to noise
in conjunction with periodic forcing in a bistable potential model.
Inspired by the above two studies, we focus on the realization of
memory device, especially the Set–Reset latch (the truth table is
shown in Table I), which is a single-bit stored, fundamental, and
omnipresent building block of computing systems. The conventional
Set–Reset latch is constructed from a pair of cross-coupled NOR logic
gates, and the response speed of Set–Reset latch restricts the speed of
the whole system. Here, we use single GRN to implement the latch
truth table, and the operation of the system can be easily morphed to
realize the other logic functions by tuning the parameters. Then, we
propose a method to enhance the LSR when the background noise
strength is lower than needed in the GRN system.

In this brief, we demonstrate the Set–Reset latch operation can
be obtained in a GRN system subjected to periodic forcing and the
conjunction of periodic forcing and Gaussian noise can enhance the
LSR phenomenon in the GRN system. This brief is organized as
follows. Section II describes the bistable GRN system. Section III
discusses the effect of sinusoidal forcing on the probability of
obtaining the LSR by numerical stimulation. Section IV presents the
adaptive approach to enhance the LSR phenomenon. The conclusion
is given in Section V.

II. BISTABLE GENETIC REGULATORY NETWORK MODEL

We only need two possible states to indicate logical 0 and 1, so we
choose a single-gene network, which is bistable. In this brief, we use
the quantitative model of the regulation of the promoter PRM of λ
phage [15]. This promoter consists of three tandem operational sites,
OR1, OR2 (activated transcription), and OR3 (repressed transcription).
The chemical reaction of the model under ambient noise is given by
suitable rescaling [15], [16]

ẋ = U̇(x) + I (t) + ξ(t) (1)
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Fig. 1. Effective potential obtained by integrating the function U̇(x).

where

U̇(x) = m(1 + x2 + ασ1x4)

1 + x2 + σ1x4 + σ1σ2x6 − γ x (2)

represents the production of the repressor due to transcription, and
x is the repressor concentration. The even polynomials in x occur
because of dimerization and subsequent binding to the promoter
region. m represents the number of plasmids per cell. We set
m = 1 in this brief. Parameter γ, which is directly proportional to
protein degradation rate, denotes the steady-state concentration of
the repressor. This parameter can be tunable in the construction of
artificial network.

The genetic network of (2) has two stable states, the low and
high protein repressor concentrations. We denote the outcome to be
logical 1 when it is in one stable state and logical 0 when it is
in another stable state. Fig. 1 shows the effective potential of (2).
Since the parameter γ can affect the depth of the potential well, we
can get different logic operations by changing γ. We set γ = 4.5
to obtain Set–Reset latch operation, while the other value of γ will
modulate the GRN system to behave as OR/AND operation, and so on.
σ1 = 1.95, σ2 = 0.08, and α = 10.9 are valued for the operator
region of the λ phage

ξ(t) = Asin(2π f t) + Dη(t) (3)

is the ambient noise added to the system. η(t) is Gaussian white noise
with D being the intensity. A and f are the amplitude and frequency
of the sinusoidal forcing.

I (t) consists of two low amplitude input signals I1 and I2,
with I1 and I2 being the two trains of square pulses encoding
the two logic inputs. To obtain the Set–Reset latch operation,
we inverse I2 before importing to the system, so I (t) = I1(t)− I2(t).

III. EFFECT OF PERIODIC FORCING ON GRN RESPONSE

First, we investigate how the GRN system behaves when it is
only fluctuated by periodic forcing, specifically sinusoidal forcing.
Fig. 2 shows the response of the system when subjected to sinusoidal
forcing. It proves that this GRN can yield clear Set–Reset latch
operation when it is driven by sinusoidal forcing alone. On the
other hand, numerical stimulation shows that when the system is
only subjected to Gaussian noise, which has the same density as
the periodic forcing (D = 0.12), the outcome of the system is not in
accordance with the Set–Reset truth table. This indicates that periodic

Fig. 2. From top to bottom, panel 1 shows I (t) = I1 − I2, panel 2 shows
I (t)+ Af (ωt), and panel 3 shows the response of the system. Here, the value
of the two inputs I1 and I2 takes the value of 0.18 when the logic input is 1,
and −0.18 when the logic input is 0, and A = 0.12, f = 0.01, and ω = 2π f .

Fig. 3. In the Set–Reset latch, the success probability P versus the amplitude
of the periodic forcing, here f = 0.01.

forcing is able to drive the system obtaining clearer logic function
than random forcing.

To study the effect of the sinusoidal forcing characteristics on the
outcomes of the system, we calculate the correct probability P of
obtaining the right logic function. The method of calculating P can
refer to [17].

We first investigate how the sinusoidal forcing amplitude affects
the system with its frequency fixed. The correct probability P as a
function of amplitude is plotted in Fig. 3. It indicates that at a fixed
frequency the correct probability of getting the right logical output
first increases and then decreases as the amplitude increases. Typical
LSR behavior is observed. At the optimal window of amplitude, the
logic outputs of the system can be almost 100% accurate when the
system is driven by periodic forcing only.

Furthermore, we also calculate the probability of obtaining dif-
ferent logic operations (OR and AND) by the single-genetic net-
work with different driving frequencies (Fig. 4). It is clear from
Fig. 4 that the system can get different logic operations by easily
morphing the parameter γ. When the desired logic is OR operation
(green area), the system needs stronger driving force, and the driving
frequency has little influence on the P ∼ 1 map. When Set–Reset
latch and AND logic are the desired logic, the optimal range of
the driving amplitude shifts with the change of driving frequency.
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Fig. 4. Success probability P ∼ 1 versus parameter γ (x-axis) and the
amplitude A (y-axis). From top to bottom, the driving frequency is 0.005,
0.01, and 0.1, respectively. Green: SR latch. Blue: OR logic. Red: AND logic.
(a) f = 0.005. (b) f = 0.01. (c) f = 0.1.

Furthermore, tuning the driving frequency or the amplitude can
transform different logic operations when parameter γ is within the
range of 4.7–5.7. When the logic operation is decided by γ, f , and A,
we call it the fuzzy area. For example, we can get AND logic operation
by setting γ = 5.3 when A = 0.7 and f = 0.01. However, the output
logic becomes Set–Reset latch operation when f = 0.1 with the
other parameters maintains unchanged. This scenario is only observed
when the driving force is periodic forcing, which is an advantage
aspect in designing changeable logic gates. For another example,
leaving the other parameters unchanged ( f = 0.1, γ = 5.7), the logic
operation can exchange between AND logic and Set–Reset latch by
tuning the amplitude.

To fully investigate the effect of driving frequency on the response
of the system, we implement numerical stimulation with different
driving frequencies, ranging from 0.001 to 100. It shows that the

Fig. 5. Output and the response of the system when the driving frequency
is f = 0.001.

Fig. 6. Panels from top to bottom, the input signal, the responses of the
system to periodic forcing, Gaussian noise, and periodic forcing together with
Gaussian noise. Here, A = 0.05, D = 0.03, and f = 0.01.

system can get 100% correct logic operation at a very wide range
of driving frequency for f > 0.003. When the driving frequency is
lower than 0.003, the response speed of the whole system is slowed
down, and the relaxation time is too long. Therefore, the correct
probability is below the required value (Fig. 5). Notably, we need
to tune the sample frequency to adapt to different driving frequen-
cies. The sample frequency is ∼10 times of the driven frequency:
fsample ∼ 10 f. When the sample frequency is lower than 10 f, the
dither error will destroy the LSR phenomenon. A very high sample
frequency is unnecessary and will reduce the computation speed.

IV. ADAPTIVE LSR

In the conventional LSR, moderate noise is necessary to drive
the nonlinear system to obtain the desired logic operation. Since the
intensity of the background noise is not under control, the system can
hardly get highly robust logical output without special modulation.
Tuning parameters of the nonlinear system to adapt to different
noise intensities are used to obtain LSR behavior in the electronic
circuits [18]. However, the characteristic of the system is changed
in this method. Another way to obtain adaptive LSR is via the
modulation of the intensity and property of the background noise [19],
which is difficult to implement.

In the above sections, we have studied the effect of periodic forcing
on the responses of the GRN system. Further, to ensure robust
operation in the random noisy background, we can add periodic
forcing at the low noise strength and switch OFF the periodic forcing
when the noise density is sufficient to get LSR. Fig. 6 shows the
responses of the system to Gaussian noise, periodic forcing, and both
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Fig. 7. In the Set–Reset latch, the correct probability when the system is
both subjected to sinusoidal forcing and Gaussian noise. Here, the frequency
of the sinusoidal forcing is 0.1.

Gaussian noise and periodic forcing. When driven by Gaussian noise
and periodic forcing separately, the system does not obtain correct
responses. However, when we add periodic forcing to the Gaussian
noise, the system yields clear Set–Reset latch operation.

Fig. 7 shows the correct probability of getting Set–Reset latch
operation when the GRN system in (2) is subjected to periodic
forcing and Gaussian noise. When the parameters of the GRN system
are set as the given value, periodic forcing is a better choice than
Gaussian noise to induce the system jumping into the right stable
state. The correct probability of getting the desired logic function
evolves nonmonotonically with increasing noise intensity when the
system is only subjected to Gaussian noise. Therefore, the LSR
phenomenon occurs. However, the peak of correct probability is
only about 60%, which is far lower than what is required for robust
logic operation. At the same time, the system yields logic operation
with near center probability, i.e., P ∼ 1, when driven by optimal
periodic forcing. Adding periodic forcing with moderate amplitude
and frequency to Gaussian noise will enhance the reliability of getting
the desired logical response in the low noise background. However,
if the noise level crosses some threshold (>0.05), we cannot obtain
consistent logical output only by adding periodic forcing. Moreover,
the width of the optimal window of the Gaussian noise band increases
by utilizing the constructive interplay of noise and periodic forcing.

V. CONCLUSION

Synthetic biology offers an opportunity to build single module,
which can be easily used to create futuristic biological circuits.
LSR is an intriguing paradigm, which can help the design of
integrated circuits, wherein the background noise floor cannot be
suppressed by constructing interplay of noise and nonlinearity.
In this brief, we apply the idea of LSR to implement a memory device
in GRN derived from the bacteriophage λ. Robust Set–Reset latch
operation is obtained when the system is subjected to periodic forcing.
Numerical experiments are conducted to study the effects of periodic
forcing on the outcome of the nonlinear system. The reliability

of obtaining the appropriate operation evolves nonmonotonically as
the amplitude of the periodic forcing increases. The output logic
operation can also be easily morphed by tuning the frequency and the
amplitude of the periodic forcing. Furthermore, we show that adding
moderate periodic forcing to low strength noise will increase the
probability of getting desired logic operation. The results presented
in this brief may help with the design of the new GRN systems
paradigm.

REFERENCES

[1] K. Murali, S. Sinha, W. L. Ditto, and A. R. Bulsara, “Reliable logic
circuit elements that exploit nonlinearity in the presence of a noise floor,”
Phys. Rev. Lett., vol. 102, no. 10, p. 104101, Mar. 2009.

[2] J. Hasty, D. McMillen, and J. J. Collins, “Engineered gene circuits,”
Nature, vol. 420, no. 6912, pp. 224–230, Nov. 2002.

[3] J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. S. Tsimring,
and J. Hasty, “A fast, robust and tunable synthetic gene oscillator,”
Nature, vol. 456, no. 7221, pp. 516–519, Nov. 2008.

[4] B. Canton, A. Labno, and D. Endy, “Refinement and standardization
of synthetic biological parts and devices,” Nature Biotechnol., vol. 26,
no. 7, pp. 787–793, Jul. 2008.

[5] M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of
transcriptional regulators,” Nature, vol. 403, no. 6767, pp. 335–338,
Jan. 2000.

[6] G. J. Nistala, K. Wu, C. V. Rao, and K. D. Bhalerao, “A modular positive
feedback-based gene amplifier,” J. Biol. Eng., vol. 4, no. 4, pp. 1–8,
2010.

[7] C. Li, L. Chen, and K. Aihara, “Stability of genetic networks with sum
regulatory logic: Lur’e system and LMI approach,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 53, no. 11, pp. 2451–2458, Nov. 2006.

[8] C. Li, L. Chen, and K. Aihara, “Stochastic stability of genetic networks
with disturbance attenuation,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 54, no. 10, pp. 892–896, Oct. 2007.

[9] A. Dari, B. Kia, A. R. Bulsara, and W. Ditto, “Creating morphable logic
gates using logical stochastic resonance in an engineered gene network,”
Europhys. Lett., vol. 93, no. 1, p. 18001, 2011.

[10] E. H. Hellen, S. K. Dana, J. Kurths, E. Kehler, and S. Sinha, “Noise-
aided logic in an electronic analog of synthetic genetic networks,” PLoS
One, vol. 8, no. 10, p. e76032, 2013.

[11] Y. Xu, X. Jin, and H. Zhang, “Parallel logic gates in synthetic gene
networks induced by non-Gaussian noise,” Phys. Rev. E, vol. 88,
p. 052721, Nov. 2013.

[12] A. Sharma, V. Kohar, M. D. Shrimali, and S. Sinha, “Realizing logic
gates with time-delayed synthetic genetic networks,” Nonlinear Dyn.,
vol. 76, no. 1, pp. 431–439, Apr. 2014.

[13] A. Gupta, A. Sohane, V. Kohar, K. Murali, and S. Sinha, “Noise-
free logical stochastic resonance,” Phys. Rev. E, vol. 84, p. 055201(R),
Nov. 2011.

[14] V. Kohar, K. Murali, and S. Sinha, “Enhanced logical stochastic reso-
nance under periodic forcing,” Commun. Nonlinear Sci. Numer. Simul.,
vol. 19, no. 8, pp. 2866–2873, Aug. 2014.

[15] J. Hasty, F. Isaacs, M. Dolnik, D. McMillen, and J. J. Collins, “Designer
gene networks: Towards fundamental cellular control,” Chaos, vol. 11,
no. 1, pp. 207–210, 2001.

[16] H. Ando, S. Sinha, R. Storni, and K. Aihara, “Synthetic gene networks
as potential flexible parallel logic gates,” Europhys. Lett., vol. 93, no. 5,
p. 50001, 2011.

[17] N. Wang and A. Song, “Logical stochastic resonance in bistable sys-
tem under α-stable noise,” Eur. Phys. J. B, vol. 87, no. 5, p. 117,
May 2014.

[18] V. Kohar and S. Sinha, “Noise-assisted morphing of memory and logic
function,” Phys. Lett. A, vol. 376, no. 8, pp. 957–962, Feb. 2012.

[19] G. Zhang, L. Liu, and Y. Kang, “The reliability of logical operation in a
one-dimensional bistable system induced by non-Gaussian noise,” Acta
Phys. Sinica, vol. 62, no. 19, p. 190510, 2012.


