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ABSTRACT Underwater images are difficult to process because of low contrast and color distortion.
The in-water light propagation model was proposed several years ago but is relatively complicated to be
used in reality. In this paper, the full underwater light propagation model is simplified to be used as the
transmission model. On the basis of this model, we propose a new method, called maximum attenuation
identification, to derive the depth map from degraded underwater images. At the same time, regional
background estimation is implemented to ensure optimal performance. Experiments on three groups of
images, namely, natural underwater scene, calibration board, and colormap board, are conducted. We report
the quantitative and qualitative comparisons of our approach with existing state-of-the-art approaches.
The performance evaluation on contrast enhancement and color restoration validates that our approach

outperforms existing state-of-the-art approaches.

INDEX TERMS Image processing, underwater technology, image restoration, image enhancement.

I. INTRODUCTION
The underwater world contains abundant resources. Thus,
the corresponding exploration has significance in the com-
mercial and scientific research areas. Although sonar is still
the primary technique used to detect underwater signal in
the long range, the photoelectric sensor technique plays an
irreplaceable role in the aspect of close observation and
object detection because it can provide high time and space
resolution and intuitive visual information. However, images
captured underwater always present a low quality because of
the special propagation characteristic of light in water [1],
which is mainly depicted as absorption and scattering [2], [3].
Researchers have employed several methods, such as laser
line scanning [4], laser range gate [5], and optical polarization
imaging [6], [7], to obtain high-quality images. Although
these methods can improve the imaging quality, the corre-
sponding imaging systems, particularly the physical appa-
ratus, are costly. As a low-cost but effective method, digi-
tal image processing is still the primary approach used to
improve the quality of images captured by underwater optical
cameras [2], [8].

Two methods, namely, image restoration and image
enhancement, are employed to improve underwater image

quality [2], [8]. Image restoration aims to recover the
degraded image based on the physical degradation model
and the information about the degraded image. The most
commonly used restoration method is reverse convolution,
which is based on the degradation model and expressed as

g(x,y) = h(x,y) *f(x,y) + n(x, y) (D

where g(x,y) and f(x,y) denote the degraded and origi-
nal images, respectively; h(x, y) is the degradation function;
n(x,y) is the noise model. The key issues of this method
are how to construct the degradation model (or specifi-
cally, the point spread function [PSF]) correctly and obtain
the parameters accurately. Aside from the classical Jaffe-
McGlamery model [9], several restoration algorithms have
been proposed. Hou ef al. [10] incorporated the underwa-
ter optical properties into the traditional image restoration
approach, measured the in-water optical properties, and used
these properties in deriving the PSF and modulation transfer
function (MTF). Trucco and Olmos [11] presented a self-
tuning restoration filter based on a simplified version of the
Jaffe-McGlamery image formation model. Liu er al. [12]
determined the PSF and MTF of seawater in the laboratory by
means of image transmission theory and used Wiener filters
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to restore the blurred underwater images. Wang et al. [13]
used layering estimation to obtain a precise degradation
model. Lu et al. [14] proposed a high-turbidity underwater
image super-resolution algorithm by descattering and fusion.
Although the results of model-based restoration methods are
rigorous, a fatal drawback of model-based restoration is that
it requires many parameters, which are scarcely known in
reality and can be relatively variable.

Image enhancement does not rely on the physical char-
acteristic and model. The main algorithms include his-
togram modification, homomorphic filtering, multiwave
denoising, edge enhancement, and color balancing. Clas-
sical algorithms, such as CLAHE [15] and Retinex [16],
have been proven effective through experiments. On the
basis of these enhancement methods, researchers have pro-
posed several integrated underwater image enhancement
algorithms [17]-[22]. Although such algorithms can provide
visually pleasing results sometimes, they may also induce
color distortion and noise amplification, particularly in turbid
water. Establishing a general and effective underwater image
enhancement method is still a necessary and challenging
work.

Il. RELATED WORK AND MAIN PROBLEMS IN
UNDERWATER IMAGE PROCESSING

The intricacies presented by the underwater environment
are far more than that presented by the terrestrial environ-
ment. However, with some simplification, the underwater
environment is similar to haze weather. From this aspect,
underwater image enhancement may be transformed into a
dehazing problem. Compared with underwater image pro-
cessing, image dehazing has been well investigated [23].
Recently, several researchers have applied deep neural net-
works to dehaze underwater images and obtained interesting
results [24], [25]. Specifically, the illumination-scattering
model is widely used to remove haze [26]-[28]. With some
prior knowledge, the transmission map is first estimated and
the restored image can then be obtained. Among the types of
prior knowledge, the dark channel prior (DCP) algorithm [29]
may be the most popular and has been conducted in under-
water image processing [30], [31]. At the same time, several
variants based on DCP, such as red channel [32] and GB chan-
nel [33], are proposed. Such algorithms consider the special
underwater propagating situation, but all use the dark channel
as the principal step (which is conducted by identifying the
lowest intensity pixel in a local patch).

However, after thousands of underwater images are
observed, we determine that prior knowledge supporting the
effectiveness of DCP is inappropriate for underwater images.
The two main reasons for the difference are as follows:
First, the type of objective image is not the same. Thus,
DCP assumes that the image shows nearly the entire object
and that part of the background (e.g., sky area) is not the
major part. However, in the water environment, objects in
one natural captured image always exist sparsely. More-
over, the background area (i.e., the infinite distance part)
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will appear in every part of the image, surrounding the
objects. Second, DCP considers that fog will lead to a high
intensity of the dark channel of the image, which indicates
that the local intensity will increase with the dense depth.
However, this phenomenon is completely reversed under-
water. Moreover, the infinite distance may result in infinite
black in the ocean. Thus, on the basis of the two points,
we believe that prior knowledge should be reconsidered to
obtain good image restoration performance during underwa-
ter image processing. Furthermore, the two main aspects of
underwater image degradation are low contrast and color
distortion. If we do not compensate for the attenuation of
different light wavelengths, then color distortion cannot be
solved.

In this study, we propose a maximum attenuation iden-
tification (MAI)-based method to dehaze and correct the
color distortion of underwater images. The attenuation effect,
which consists of absorption and scattering, is assumed to be
strongly correlated with imaging depth. Thus, we first derive
the depth map according to the attenuation situation. The
illumination-scattering model is changed to formulate the
attenuation formation as a simplification of the underwater
light model. We apply the proposed method to three groups
of underwater images to test its performance subjectively
and objectively. The remainder of the paper is organized as
follows: Section III describes the underwater imaging model
and its transformation. Section IV discusses the MAI-based
underwater image restoration method in detail. Section V
presents the experimental results. Section VI provides the
conclusion.

Ill. UNDERWATER LIGHT MODEL
The full underwater model described by Duntley [1] is gen-
erally expressed as

N/ 2.0, ) = (No(z. 0, p)e~*@"
+N(Zz, 9’ ¢)e(K(z,9,¢)rcos0)
x(1 — e(—a(z)r+K(z,9,¢>)FCOS9)). 2)

where ;N,(z, 0, ¢) is the observed radiance, which is a func-
tion of the depth of the observer z; 6 and ¢ are the zenith and
azimuth angles between the observer and the target, respec-
tively. The observed radiance is a mixture of the radiance
at the subject, ;No(z, 6, @), and the radiance in the water
column (i.e., the airlight), N(z;, 6, ¢). In these terms, z; repre-
sents the depth of the target. The attenuation coefficient «(z)
is the sum of two terms, namely, the scattering and absorption
coefficients. The distance between the observer and the target
is denoted by r. The radiance attenuation function, K (z, 6, ¢),
indicates how the airlight changes with depth. If we assume
that the water is homogeneous, then the effect of K is sel-
dom appreciable. Thus, the full underwater model 2 can be
simplified as

N (2,0, 0) = No(z:, 0, 9)e) + N(z, 0, p)(1 — 7).
3)
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Notably, the attenuation coefficient o in model 3 is the
sum of the scattering and absorption coefficients, that is,
o = o5 + a4 The absorption effect is the most different
part between foggy ambient and in-water situations, which
cannot be ignored underwater. Moreover, according to the
measurement and statistical data, light with different wave-
lengths involves different in-water absorption parameters.
Fig. 1 shows that the absorption coefficient of red
light (600 ~ 700 nm) is higher than that of green and
blue light. Thus, the R, G, and B color channels should be
considered separately underwater.

FIGURE 1. Statistical data of the absorption coefficients for different
wavelengths.

Another important factor that should be considered is the
illumination situation. In the atmosphere, the background
tends to be bright because of sunlight. However, in the water,
the infinite background light is black because of absorption.
Fig. 2 shows a group of raw images captured in different types
of ocean water and the corresponding dark channel images.
According to DCP, the dark channel of a hazy image will
present a high intensity in regions with dense haze. However,
the real situation of underwater images (e.g., the images
shown in Fig. 2) is that the dark channel of a distant area
tends to be zero, whereas that of a near object, which is
bright, exhibits a high intensity. The difference between
atmospheric and underwater situations is caused by the
absorption aspect. Thus, according to light absorption, com-
puting the dark channel of underwater images makes little
sense.

Another simple underwater prior knowledge is that the
light intensity will decay as an exponential function of
distance. The irradiance E at position » can be modeled
as

E(r) = E(0)e ™" “)
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where o is the total attenuation coefficient of the medium.
Thus, we can rewrite model 3 in the imaging end as

I(x) = J(x)§(x) + A(1 — §(x)) )

where [ is the observed intensity, which corresponds to
(N (z,60,¢); J is the object radiance; A is the global
background light; & = ¢(~%") is the medium transmission
coefficient; x is the vector of the coordinates. In such man-
ner, the entire underwater model is similar to the popu-
lar illumination-scattering model, which is usually used as
dehazing model and can be described as

I(x) = J(x)t(x) + A(1 — 1(x)) (6)

The only difference between models 5 and 6 is that & con-
sists of the absorption and scattering effects, whereas t always
describes only the scattering part in dehazing situation.

IV. MAI-BASED METHOD

A. ESTIMATING THE BACKGROUND LIGHT

Accurate background light estimation is the basis of a good
restoration effect. We assume that the background part lies in
the most distant part of the picture. Thus, the most fundamen-
tal job is deriving the depth map.

According to Eq. 4, the farther from the camera, the lower
the intensity. Moreover, further analyses show that the
absorption of different wavelengths differs. The red color
travels a shorter distance than do the blue and green colors.
At the same time, according to Rayleigh scattering theory,
the shorter wavelengths of green and blue light will scatter
more than the longer wavelength of red light [31]. Compre-
hensively considering the two factors, we can deduce that,
with a long distance, the total power of the red color will be
lower than those of the blue and green colors, which can be
expressed as

ER(r) < EC(r)
ER(ry < EB(r) (7

where E is the irradiance, which is the same meaning as that
in Eq. 4; R, G, and B represent red, green, and blue, respec-
tively. Thus, the red color can be used to derive the depth map
because it is most sensitive to the change in distance.

First, we filter the red color with a maximum filter of a
window size that can be modulated to derive the depth map
of the image. Then, we select the top 10% lowest pixels. Cor-
responding to these pixels, the pixels in the original image /
are selected as the background. Subsequently, background
light estimation is conducted on the basis of these pixels.
Furthermore, in the atmosphere, the background light can be
considered uniform. However, illumination is always nonuni-
form underwater. Thus, assuming that the entire background
is the same may be inappropriate. Moreover, the background
of an underwater image is always surrounding the object.
Thus, the background should be estimated in a highly detailed
manner. In this study, we slice the input image into n x n
pieces to identify the background. Similar to the effect of
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FIGURE 2. (a-d) Original images captured in different types of ocean water and (e-h) the corresponding dark channel images.

patch size, the larger the value of n, the rougher the estimation
background, and vice versa. At the same time, n should not
be small because a small n exhibits a low possibility of
background existing in the window. We recommend that »
be equal to 2 or 3.

Figs. 3 and 4 show the most haze-opaque regions and
the corresponding background light estimation for MAI and
DCP, respectively. Obviously, the regions detected as the
background area by our MAI method are accurate. By con-
trast, the DCP method incorrectly detects regions with high
intensity as the background areas. Notably, the background
pixels detected by our MAI method are far from the small
dark objects in the original images (e.g., the small fish
in Figs. 3(b) and 3(c)). At the same time, compared with
the estimation background images shown in Figs. 3 and 4,
the colors of our estimation background are more similar to
the original background of the raw images, making MAI a
good foundation for color correction.

B. ESTIMATING THE TRANSMISSION

Assuming that the transmission and background light in a
local patch Q(x) is constant, we calculate the maximum
intensity in the local patch on both sides of Eq. 5. As analyzed
previously, the attenuation « for different colors with differ-
ent wavelengths is relatively distinct because of the different
attenuation and scattering coefficients. Thus, the attenuation
o must be considered particularly for colors R, G, and B.
Hence, we rewrite model 5 as

max(I%(y)) = éx)max(JR(y)) + AX)F(1 - &8 (x))

YEQ(X) YEQ(X)

max(19(y)) = E@max(J°(y)) + A®°(1 — £9(x))
yEQ(X) yYEQ(X)

max(I8(y)) = emax(J8(y) + A®B(1 - £8(x)),  (8)
yeQ(x) YEQ(X)
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where 1 denotes the normalized unity. Correspondingly,
A, J and I need to be normalized to range [0,1]. Given that
A and & can be considered constant in the patch, they can
be placed outside of the max operators. Taking color R as an
example, we continue to transform the function as

1 — max(I®(y)) = e8x)(1 — max(J®(y)))
YEQ(X) yeQ(x)

+(1 - g*)(1 — ARx)). (9)
Then, we divide 1 — AR(x) on both sides as

1 — maxyeqwX(y))

AR =

— maxyeo) (/X (¥))
1 — AR(x)

+5R<x>1
(10)

We further normalize the equation as

_ 1- maXyeQ(x)(-]R(Y))

(1 1 — AR(x)

)€ (x)

1- maXyeQ(X)(IR(Y))
1 — AR(x)

=1- (11)

First, we consider the attenuation of the part near the
site. Commonly, the underwater background light A is dark,
particularly in the deep sea. Thus, the intensities of A in the
three colors R, G, and B are always low. At the same time,
with the appropriate patch window size, the maximum value
of J can approximately reach unity. The lighter the object
is, the more precise the assumption is. Thus, the proposed

method is begt performed when the object is bright. The term
Hmfy+,§’gg(y)) tends to be zero in the near field. In this
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FIGURE 3. (a-d) Most haze-opaque regions detected by our MAI method shown as black (the dotted lines illustrate the sliced pieces) and (e-h) the

corresponding background light estimation.

(@) (b) (c) (d)
(e) () (® (h)

FIGURE 4. (a-d) Most haze-opaque regions detected by dark channel method shown as black and (e-h) the corresponding background light estimation.

situation, attenuation £ can be simply estimated as

1 — maxyeomIX(y))
1 — AR(x)

According to Eq. 4, £ tends to be 0 when r — o0 in
the area with infinite distance. At the same time, Eq. 12 also
yields & — O at the infinite distance part of the area where
the estimation background light is similar to /. Thus, Eq. 12
handles the near and far parts smoothly.

Notably, the tendency of transmission of blue and green
colors is similar to that of red color. Thus, the transmission
of the two colors can be computed in the same manner as

£ 1— (12)
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that of red color. However, the intensity of the transmission
of different colors differs. Therefore, the R, G, and B channels
should be calculated separately.

With the estimated background light and the transmission
map, we can recover the scene radiance according to Eq. 5.
In practice, we need to set a limit to medium transmission &.
On the one hand, even for the clearest water, the attenuation is
smaller than unity for the absorption and scattering of water
molecules. On the other hand, the transmission should be set
larger than zero because a slight attenuation should be pre-
served to keep the restored image naturally. In our algorithm,
the limit of £ is empirically set to be 0.1 < & < 0.95.
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FIGURE 5. Subjective comparison of different methods on natural scene images: (a) raw images, (b) results of DCP,
(c) results of CAP, (d) results of DehazeNet, (e) results of MSCNN, (f) results of NON, (g) results of CLAHE, (h) results
of Retinex, and (i) results of MAI.
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(a) (b) (© (d)

® (9) (h) )

FIGURE 6. Subjective comparison of different methods on images of a calibration board coupled with a color RGB tank: (a) raw images: from top to
bottom, the distances from the camera to the object are 120, 210, 270, and 360 mm:; (b) results of DCP; (c) results of CAP; (d) results of DehazeNet; (e)
results of MSCNN; (f) results of NON; (g) results of CLAHE; (h) results of Retinex; and (i) results of MAI.

V. EXPERIMENTAL RESULTS

We collect three groups of underwater images to eval-
uate the performance of our algorithm. The first group
of images are captured by imaging of natural scenes and
are widely used in underwater image processing. The two
other groups are images captured under experimental situ-
ations: one is imaging of a calibration board coupled with
a color RGB tank and the other is imaging of a colormap
board. The distance from object to camera is changed to
obtain different visibility values. We consider two clas-
sical image enhancement methods, namely, CLAHE [15]
and Retinex [16]; three integrated dehazing methods,
namely, DCP [29], CAP [27], and NON [23]; and two
recently developed deep neural network methods, namely,
DehazeNet [24] and MSCNN [25]. We also compare these
methods with our proposed MAI method subjectively and
objectively.

A. SUBJECTIVE PERFORMANCE EVALUATION
Fig. 5 shows the images of underwater natural scenes and the
corresponding processed results. Our MAI method obtains
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obvious contrast enhancement and reveals a natural color
scene. In the second original image, the fish group on
the upper part is fuzzy. The detailed information of all
the four original images is unclear because of the scatter-
ing effect. By contrast, in our processed result, the fish
group is clearly visible and the detailed information, such
as the black part of the tail of the fish in the last image,
is clear.

Figs. 6 and 7 show the images of a calibration board
coupled with a color RGB tank and a colormap board at
different distances from the camera, respectively. Underwater
images suffer significantly from color distortion dominated
by a green tone because of the different attenuation coef-
ficients of different wavelengths. With the increase in the
distance, the color contrast and accuracy decrease. The seven
counterparts (i.e., four numbers and three colors) all exhibit
unbalanced contrast enhancement and color correction. For
example, NON enhances the contrast most. At the same
time, NON amplifies the illumination distortion and induces
a bluish tone. Our algorithm performs well in color correction
and contrast enhancement.
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(a) (b) (© (d)

(® (9 (h) (i)

FIGURE 7. Subjective comparison of different methods on images of a colormap board: (a) raw images: from top to bottom, the distances from the
camera to the object are 120, 210, 270, and 360 mm; (b) results of DCP; (c) results of CAP; (d) results of DehazeNet; (e) results of MSCNN;
(f) results of NON; (g) results of CLAHE; (h) results of Retinex; and (i) results of MAL.

B. OBJECTIVE PERFORMANCE EVALUATION

Contrary to atmosphere images, underwater images are
more difficult to restore because the corresponding reference
images are hard to be acquired especially for natural underwa-
ter scenes. Thus, we use the calibration and colormap boards
as the experimental objects to obtain objective results. Two
major factors of an image restoration algorithm are usually
considered: one is contrast enhancement together with edge
restoration and the other is color correction.

1) CONTRAST AND VISIBILITY RECOVERY
In this work, we rely on a non-referenced metric proposed
in [34] to evaluate the level of contrast enhancement. The
assessment computes the gradient ratio at the visible edges.
Three coefficients, namely, the ratio of restored edge number
to original edge number (n,), the ratio of the gradient intensity
for every edge pixel (r.), and the number of pixels that the
algorithm saturates to black or white (§), are calculated. The
formulation for each coefficient is defined as

e = 10 (13)

no
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where n, and ng are the number of edges for the restored
and original images, respectively. n, evaluates the quantity
of edges that are absent in the original image but present in
the restored image.

1
re= - Z log(ry), (14)

where r; is the ratio of the gradient in the restored image to
that in the original image for each pixel i. Finally, the third
coefficient § is computed as

ng
= ——7——, 15)
dimy x dim,
where n; is the number of pixels that the algorithm saturates
to black or white.

As we only consider visibility recovery, we select the first
two coefficients as the assessment parameters. The group of
calibration board images and the corresponding processed
results are taken as the assessment object. Moreover, many
suspended particles in water also enter the image scope.
Determining whether these particles should be considered
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©

(d)

FIGURE 8. Cropped images of the calibration board and edge map. From right to left: original images and edges, DCP results and edges, CAP results and
edges, DehazeNet results and edges, MSCNN results and edges, NON results and edges, CLAHE results and edges, Retinex results and edges, and MAI
results and edges.

meaningful information or only the noise point is difficult. The edges are detected as larger than 5% of the change in the
Thus, in this experiment, we only evaluate the calibration entire gradient.
board area while ignoring the background area. The cali- Tables 1 and 2 show the n, and r, coefficients of differ-

bration board area is carefully cropped from the processed ent distances for different methods. We observe that, when
images and resized to the same size. Then, the edge and the object board is near the camera (120 mm), the vis-
gradient coefficients are computed using Eqs. 13 and 14. ibility is good. Thus, the contrast ratios n, and r, of
Fig. 8 shows the cropped areas and the corresponding edges. all of the methods are only moderately enhanced. When
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TABLE 1. Comparison of the visibility recovery coefficient ne of four images.

distance DCP CAP DehazeNet MSCNN NON CLAHE Retinex MAI

(mm)

120 1.1051  1.1247 1.1369 2.6609 5.6529 5.0067 3.3684 1.2305

210 8.2843 8.0561 5.5203 28.559 88.2727 393133 39.2863 6.7176

270 9.3435 13.1465 10.8599 51.9682  124.8408 88.6369 84.5541 12.0637

360 13.6161 16.433  12.8795 58.1499  108.1563 60.3884 64.5134 13.8616
TABLE 2. Comparison of the visibility recovery coefficient re of four images.

distance DCP CAP DehazeNet MSCNN NON CLAHE Retinex MAI

(mm)

120 0.7792 0.8147 0.7457 0.9977 1.0716 1.0482 0.9876 0.9417

210 0.9495 0.8901 0.8625 0.9874 1.005 1.0095 0.986 0.9699

270 0.9619 0.9592 0.9443 0.9984 1.0107 1.0057 0.9982 0.9757

360 0.9808 1.0044  0.9822 1.0096 1.0121 1.0174 1.0043 1.0012

the distance of the object board to the camera increases
(210, 270, and 360 mm), the visibility of the original images is
decreased and the contrast ratios n, and r, of all of the meth-
ods are significantly enhanced. In general, MSCNN, NON,
CLAHE, and Retinex exhibit high contrast enhancement,
whereas DCP, CAP, and DehazeNet exhibit low contrast
enhancement. Compared with that shown in Fig. 8, the edge
results of DCP, CAP, and DehazeNet are unclear. Those of
MSCNN, NON, CLAHE, and Retinex introduce fake edge
points, such as the amplified illumination distortion. The
resulting edge map of MAI detects true edges clearly and
eliminates illumination distortion correctly. Notably, it is true
that the proposed method does not perform largest or weak-
est in every norm. We believe that the criterion of a suc-
cessful restoration method is the best overall performance.
For example, the contrast amplification should be moder-
ate, for a small one may be not enough and a too large
one may cause distortion. So combined with the visual per-
formance shown in Fig. 8, MAI works in an appropriate
way.

2) COLOR CORRECTION

In the previous section, we compare the contrast enhancement
of different restoration methods. In this section, we examine
another important characteristic of image restoration, that is,
color correction. For this end, we consider the atmosphere
image of the colormap board taken by the same camera with
the underwater images as the ground truth image (as shown
in Fig. 9). Then, we compute the mean square error (MSE)
for each raw and restored image. The MSE measures the
difference of two images. A low MSE indicates that the two
compared images are similar to each other, and vice versa.
We should achieve a low MSE for underwater image restora-
tion to obtain a good color correction performance. We also
manually crop the colormap board area carefully from each
processed image to eliminate the effect of the background
when calculating the MSE.
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FIGURE 9. Ground truth colormap board image.

Fig. 10 shows the cropped areas of the raw images and the
results of the different algorithms. The corresponding MSE
for each image is plotted in Fig. 11 to show the tendency of
change directly. Clearly, except for Retinex, the MSE for the
other methods all increases with the increase in the camera
distance. MSCNN, DehazeNet, CAP, NON, and DCP obtain
higher MSE than that of original images, indicating that they
introduce severe color distortion. For each fixed distance,
our algorithm exhibits the lowest MSE. Notably, the MSE of
Retinex decreases with the increase in the camera distance.
This phenomenon is irrational. However, carefully examining
the resulting image reveals the reason. Retinex may lead to
bias on the entire colormap in the form of changes to the mean
value rather than different effects on different colors. Thus,
the contrast decreases with the increase in the distance. The
bias also decreases, which results in a low MSE. Although
Retinex obtains a lower MSE than that of our MAI at a
distance of 360 mm, we still assert that our algorithm can
obtain a better color correction effect.
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(e)

® (9) (h) @

FIGURE 10. (a) Raw images of the colormap board: from top to bottom, the distances from the camera to the object are 120, 210, 270, and 360 mm;
(b) results of DCP; (c) results of CAP; (d) results of DehazeNet; (e) results of MSCNN; (f) results of NON; (g) results of CLAHE; (h) results of Retinex;

and (i) results of MAI.

FIGURE 11. MSE curve for the different methods.

VI. CONCLUSION AND DISCUSSION

In this study, we propose an image restoration method, which
aims at enhancing the contrast and correcting the color dis-
tortion of underwater images. The proposed MAl-based algo-
rithm considers not only the scattering but also the attenuation
as a whole as the transmission coefficient. First, we use
the maximum map of the red channel to derive the depth
map, slice the entire image to small pieces, and estimate
the background light for each piece. The overall background
light is obtained by linear interpolation to the background
pieces. Second, based on the simplified light propagation
model, the transmission map is estimated for the R, G, and
B colors separately. Three groups of images are taken as our
experimental images: one is natural underwater scene and the
two other are images of a calibration board coupled with a
color RGB tank and a colormap board. The subjective and
objective tests show that the proposed method performs well
in terms of contrast enhancement and color correction.

VOLUME 5, 2017

However, given that we use certain prior knowledge, that
is, the red channel light attenuates fastest, to derive the depth
map, the assumption may not adapt to several special condi-
tions. For example, when the real large-scale object is nearly
dark, such as a diver who wears a black diving suit, the prior
knowledge may be inappropriate and the processing result
may appear distorted. For most instances, the underwater
world is colorful. Thus, the proposed method can work well
most of the time.
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