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Abstract—Plankton size spectra monitoring is crucial for managing and
conserving aquatic ecosystems. Thus, we develop an in situ size spectra
monitoring system to obtain the size spectra of plankton and the informa-
tion of their living status underwater. The system consists of an imaging unit
and an information processing unit. The imaging part applies a darkfield
illumination to enhance the image contrast. Three lenses with different
magnifications are alternated by a motor automatically to capture sizes
of plankton from 3 pzm to 3 mm. Moreover, the system can analyze the
captured images in real time using the proposed multitask size spectra con-
volutional neural network, obtaining size spectra and density distribution
of plankton simultaneously. Field test confirms that our system performs
well both in imaging and information processing. Furthermore, the system
can provide the living behavior of plankton, thereby helping biologists to
study the aquatic ecosystem effectively and precisely.

Index Terms—Convolutional neural network (CNN), plankton monitor-
ing, size spectra, underwater vision.

I. INTRODUCTION

LANKTON are the floating communities of plants and animals
P that live in large bodies of water. These plankton typically free
float with water currents [1]. In addition to representing the bottom
few levels of the food chain that supports commercially important
fisheries, plankton ecosystems play an indispensable role in the bio-
geochemical cycles of many important chemical elements, including
the carbon and oxygen production cycles of oceans [2]. Plankton abun-
dance and distribution strongly depend on factors, such as ambient
nutrient concentrations, the physical state of the water column, and the
abundance of other plankton. Thus, plankton are sensitive to natural
and man-made factors [3]. Monitoring the status of the plankton in
aquatic environments has substantial value. This process may not only
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TABLE I
SIZE RANGE OF PLANKTON DIVISION

Group Size Range
Megaplankton > 20cm
Macroplankton 2 ~ 20cm
Mesoplankton 0.2 ~ 20mm
Microplankton 20 ~ 200pm
Nanoplankton 2~ 20pum
Picoplankton 0.2 ~2um
Femtoplankton < 0.2um

help people to estimate climate change or the quality of water, but also
contribute to the study of the ecological environment and life. However,
correctly sampling and measuring the biomass and distribution of the
plankton, especially in sifu and in real time, remains a long-standing
challenge [4], [5].

Essentially, plankton are defined by their ecological niche rather than
any phylogenetic or taxonomic classification. The determination of the
trophic level of plankton is not always straightforward. For example,
many plankton are both photosynthetic producers and heterotrophic
consumers [6]. Thus, plankton are frequently described in terms of size
(as listed in Table I). The existence and importance of nano and even
smaller plankton (< 20 m) were only discovered during the 1980 s.
However, they are considered to make up the largest proportion of all
plankton in number and diversity.

Traditionally, plankton are sampled by a customized sample net.
Such a net is often a multiple opening and closing net. When nec-
essary, a boat is equipped with it and towed up and down to obtain
replicate samples from destination depth intervals. Several popular
plankton samplers are multiple opening/closing net and environmental
sensing system [7], Bedford Institute of Oceanography Net and Envi-
ronmental Sensing System [8], MultiNet [9], and Gulf-V [10], to name
a few. When the sample is collected by the sampler, a standard set
of procedures, including separation, taxonomic analyses, and dry, is
processed by researchers. The procedures are always carried out in the
laboratory or on the deck of a boat [11].

Plankton sampling and analysis are both time consuming and ex-
pensive. The collection of relatively complete samples from a sea zone
always requires several days of work on a boat, followed by months of
sample processing and analysis. Moreover, considerable active infor-
mation, such as the living status of plankton, is lost because the sample
analysis is not performed in situ. Furthermore, given the extrusion and
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avoidance of significantly small organisms regardless of the small mesh
size in the sampler net, data obtained by the traditional sample method
can not fully reflect the exact ecological situation [12].

Due to the shortcoming of towed sampling and the necessity to mon-
itor the plankton in sifu, automatic or semiautomatic plankton monitor-
ing systems have been urgently developed [13]. The most remarkable
one is optical plankton counter (OPC), originally designed at the Bed-
ford Institute of Oceanography, Dartmouth, NS, Canada, as a remotely
towed sensor providing continuous real-time information on the size
and abundance of zooplankton [14], [15]. The OPC has been deployed
on various platforms and utilized in numerous water investigations.
However, the OPC has several limitations. The most dominant one is
maintaining a significant probability of two or more particles that are
present in the beam simultaneously and be counted as a big particle
when the plankton density is large [16]. Herman developed a new gen-
eration of the OPC, that is, the laser OPC (LOPC) [17], to solve the
limitations of the original OPC. The LOPC consists of a laser diode,
a cylindrical lens, and a central processing unit. The basic principle of
measurement is unchanged though. Both OPC and LOPC mainly aim
at counting the plankton numbers and measuring the size. They are not
imaging systems that provide visual information.

To obtain more information about the living status of plankton, sev-
eral in situ imaging systems are developed, such as video plankton
recorder (VPR) [18], underwater video profiler [19], shadowed image
particle profiling evaluation recorder (SIPPER) [20], zooplankton vi-
sualization system (ZOOVIS) [21], in situ ichthyoplankton imaging
system (ISIIS) [22], scripps plankton camera (SPC) [23], electronic
holographic camera [24], FlowCAM [25], and Imaging FlowCytobot
(IFCB) [26]. The VPR is highlighted for its high motility and multi-
functions, and the objective plankton size range is 100 yum—1 cm. The
SPC is another notable plankton imaging system, which uses darkfield
illumination to enhance the contrast of transparent objects. The devel-
opment of the SPC processes several generations. Millions of images
of plankton have been captured by SPC (or the SPC2) and have been
published on the website: http://spc.ucsd.edu. Several new species of
plankton have been recognized with the help of the SPC.

Most aforementioned plankton imaging systems provide the corre-
sponding processing program, such as plankton extraction, identifica-
tion, and classification [13]. Tang et al. [27] designed an automatic
recognition system combining moment invariants and Fourier descrip-
tor with granulometric features using a learning vector quantization
neural network to classify plankton images detected by VPR. Luo
et al. [28] presented a system to recognize SIPPER underwater plank-
ton images by combining moment invariants and granulometric features
with certain specific features (e.g., size and convex ratio) via active
learning combined with support vector machine. Hu and Davis [29]
developed a dual-classification method in which each VPR plankton
image is identified first using a shape-based feature set and a neural net-
work classifier, and then using a texture-based feature set and a support
vector machine classifier. Zhao et al. [30] classified the binary SIPPER
plankton image via random subspace and verified that the combining
multiple stable classifiers are better than a single classifier. Sosik and
Olson [31] developed an approach for [IFCB plankton image classifica-
tion, including feature extraction, feature selection, and support vector
machine classifier. Vandromme et al. [32] accessed the biases in com-
puting the size spectra of automatically classified zooplankton from a
ZooScan integrated system in the laboratory. Li et al. [33] proposed
a pairwise nonparametric discriminant analysis for recognizing a SIP-
PER binary plankton image. Bi et al. [34] developed a semiautomated
method to analyze plankton taxa from images acquired by ZOOVIS.
Faillettaz et al. [35] postprocessed a computer-generated classifica-
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tion for images collected by the ISIIS using random forest to describe
plankton distribution patterns. In addition, automatic identification al-
gorithms also attract more attention from the plankton analysis and
computer vision interdisciplinary researchers, such as ADIAC [36],
DiCANN [37], and so on [38]-[41].

However, nearly all the preceding processing programs work
independently from the imaging instrument, the underwater part takes
series of pictures, and then the automated plankton image processing
softwares analyze the images afterward on a computer (on board or in
the lab). So technically, the aforementioned plankton imaging systems
are more like plankton cameras than complicated digital instruments.
Moreover, biologists believe that the size of planktonic organisms and
the relationship between their abundance and the size, rather than their
taxonomy, are more appropriate to indicate the situation of the ecolog-
ical environment [42], [43]. Academically, the relationship between
abundance and size is called size spectra. The analysis of the slopes
of size spectra is widely used at present to assess the state of marine
ecosystems at regional and global scales [44]. Observed size spectra
typically become steep (negative) following exploitation (mainly of
fishes). Several researchers have also studied the relationship between
size spectra and climate change [45]. Given these reasons, considerable
plankton monitoring equipment provides the function to obtain the
size and abundance information. However, nearly all the vision-based
systems first classify the plankton and then measure the size of every
plankton individually. Recognizing all kinds of plankton is nearly
impossible because plankton are variously oriented in three dimensions
and live in different shapes. Thus, the method is not only time consum-
ing but also inaccurate. Furthermore, the existing plankton imaging
systems aim at achieving the complete picture of individual planktonic
organism to help the classification. The dedicated image processors
scan for the region of interested image contained objects that are
large enough for identification. This is an effective effort to reduce
workload. However, the active living information of the biological
communities, which need to be reflected by the whole picture, is lost.

Further, most of the existing underwater imaging systems use com-
posite cable to transmit the images and supply power. Limited by the
transmission speed, the quantity and quality of the captured images
must be reduced. With the development of embedded computing unit,
in situ information processing comes true and becomes an effective
method nowadays. Images can be processed on site and real time, thus,
more useful information can be well handled timely, leaving only the
processed valid data to be transmitted.

Therefore, according to the oceanography need and the development
of technology, a new monitoring system that can measure the size spec-
tra and record the community behavior is required. In this paper, we
present an in situ plankton monitoring system. Different from the ex-
isting systems, the proposed system focuses on detecting the biomass
and distribution accurately, not via the traditional plankton classifica-
tion procedure, but using a multitask size spectra convolutional neural
network (MSCNN). The imaging unit and an embedded computation
unit are combined to monitor the plankton community and analyze the
information intelligently in real time. Our in situ monitor can record the
size spectra of aquatic biota continuously, and obtain the density map
simultaneously. A darkfield multiple magnifications microscope sys-
tem is designed to capture plankton images, ranging from nanoplankton
to small mesoplankton (3 yum — 3 mm).

The remainder of this paper is organized as follows. In
Section II, the main schematic of our in situ plankton size spectra
monitoring is introduced. The MSCNN is explained in Section III. Im-
plementation details and experimental results are given in Section IV.
Section V presents the conclusion and discussion.
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TABLE II
SPECIFIC PARAMETERS OF MICROSCOPIC IMAGING LENSES

Item Large format 2Xx microscope 10X microscope
tele-centric lens  objective objective
Magnification 0.9% 2% 10x
Numerical Aperture 0.045 0.055 0.42
Working Distance (mm) 111 34 15
Field of View (mm x mm) 3.1 x 3.1 2.2 x 2.2 1x1
Focal Length (mm) - 100 20
Resolving Power (um) 7 5 0.6
TABLE III

]l ﬁ!u ‘ I
(a)
light source spider light 40mm EFL motor  camera Mage processing
. e X and power unit

stop lens

s

frosted élass 35mm Eﬁ_ lens wina.()ws microscopic objective plate(including one tele-
(b) centric lens and two microscopic objectives)

Fig. 1.  Design structure of our in situ plankton size spectra monitoring system.
(a) Top view. (b) Internal structure.

II. In Situ PLANKTON SIZE SPECTRA MONITORING SYSTEM

All the components of our in sifu plankton size spectra monitoring
system are housed within a cylindrical-shaped hull, which can be fur-
ther divided into two concentric cabins, as illustrated in Fig. 1. The
left cabin houses the light source, whereas the right cabin contains
the imaging lenses and information processing unit. A power unit is
also mounted on the right cabin. Simultaneously, a multiple-function
interface is set at the bottom of the whole system to facilitate the data
communication and power connection between the system and a shore-
based station. The entire apparatus is 97 cm long. Here, we introduce
our system from the perspective of function, including the imaging
subsystem (unit) and the information processing subsystem (unit).

A. Imaging Subsystem

The imaging system uses darkfield illumination, formed by a white
color LED and two aspherical achromatic lenses, to enhance the con-
trast of transparent objects. The imaging unit is more complicated.
As previously mentioned, the plankton size varies over a wide range.
Thus, we design an auto-modified multiple magnification imaging
system to cover the size range of 3 ym — 3 mm, thereby indi-
cating that the proposed system can monitor from nanoplankton to
small mesoplankton. Three magnifications, that are 0.9x, 2x, and
10x, are obtained: wherein 0.9x is achieved via a large format
telecentric lens, which can supply a large field view, whereas 2x
and 10x microscope objectives are used to realize the correspond-
ing magnifications for microscopic imaging. The detailed informa-

SPECIFIC PARAMETERS OF THE CAMERA

Item Parameter
Pixels 2048 x 2048
Pixel Size (um) 5.5 %X 5.5
Pixel Depth 12bit

Frame Rate (fps) 75

Video Output USB 3.0

Resolution (MegaPixels) 4.2

Fig. 2.
system.

1951 USAF resolution test chart captured underwater by the proposed

tion of the three lenses and the camera is listed in Tables II and III,
respectively.

To indicate the resolving power, a 1951 USAF resolution test chart,
which is conformed to the MIL-STD-150 A standard, is applied as
a shooting target. Fig. 2 depicts the captured image. The scales and
dimensions of the bars are listed in Table IV. Clearly, the fourth element
of Group 7 is captured well, showing the resolution of the proposed
system down to 3 pm.

Specially, the three objective lenses are set on a disk, which can
be rotated by a motor. The motor enables the three lenses to shift
alternatively. Moreover, a location sensor is used to position every
lens appropriately at the center of the light path in each turn. Two
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Fig. 3. Samples of plankton captured by the proposed system.
TABLE IV
WIDTH OF ONE LINE IN MICROMETERS IN USAF RESOLVING
POWER TEST TARGET 1951

Group Number

Element 4 5 6 7

1 3125 1536 7.81 391
2 27.84 1392 696 348
3 2480 1240 6.20 3.10
4 22,10 11.05 552 276
5 19.69 9.84 492 NA
6 17.54 877 438 NA

extra motors are used to change the location of the objective lens
and camera because different magnifications require various imaging
distances. The three motors and camera are controlled by an embedded
Advanced RISC Machine platform. It is set to take pictures every 10
min, and three magnifications at each run. The interval time and number
of images can be set according to practical needs. Thus, the subsequent
information processing unit has abundant time to process the images.
Pictures of plankton captured by the system are shown in Fig. 3.

B. Information Processing Subsystem

The schematic procedure of the information processing subsystem is
shown in Fig. 4. The quality of the captured images remain low given the
underwater light attenuation and suspended substance, although we use
darkfield illumination to enhance the outline of the plankton. Thus, the
image enhancement step is necessary. [llumination normalization and
edge enhancement are realized in this subsystem. The system mainly
aims to monitor the biomass size spectra of the ambient environment
but not the plankton classification. Thus, we propose the MSCNN to
detect the individual shape of every plankton to count the biomass size
spectra. Moreover, the density distribution of the ambient plankton is
achieved to show the real living status of the community. Furthermore,
a judgment unit is added to monitor whether the biomass size spectra

is normal. If something abnormal occurred (which indicates that the
distribution of the biomass size spectra has changed significantly), then
the frame is recorded, and an abnormal flag will be set to facilitate the
further exploration or detection.

III. MULTITASK SIZE SPECTRA CONVOLUTIONAL
NEURAL NETWORK

A. Biomass Size Spectra

Empiricists and modelers currently adopt multiple definitions to cal-
culate the biomass size spectra explicitly. The difference is shown in
various combinations of normalized or nonnormalized biomass distri-
bution B, or abundance N, or energy £, versus individual length [,
weight w, or volume v, in a log—log space. Typically, 2 is applied as
the base, which means each size class width is doubled with respect
to the previous one. According to different regression modes, the size
spectra can be plotted as linear or dynamic one.

In this research, we perform several simplifications because we must
obtain the size spectra from the image (in a 2-D form). The numbers of
different size classes are counted as [V, and each particle is handled as
ellipses shape to calculate the volume. The continued frames are used
to refine the size spectra. Thus, the size spectra can be recognized as
the ratio between N and v.

B. Multitask Size Spectra Convolutional Neural Network

Two coefficients, namely the number and the shape of the plankton,
should be computed to obtain the size spectra of plankton. Tradition-
ally, these two goals can be realized by object detection method based
on handcrafted features [46] or saliency [47], [48]. Recently, deep
convolutional neural network (CNN) have achieved great development
in detection field [49]. After trained by large-scale data, CNN yields
a really high accuracy [50]. As CNNs have proved their efficiencies
in natural language processing and computer vision fields, researchers
explore the method on many real applications [51]-[53]. A kind of
successful application is applying CNN to count the density map of
a crowd to prevent the extreme event from occurring. For example,
Zhang et al. [54] proposed a multicolumn CNN, which stacks the fea-
ture maps generated by filters of different sizes and combines them to
generate the final number prediction; Ofioro-Rubio et al. [55] presented
two models, Counting CNN and Hydra CNN, to count object instances
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Fig. 4. Main schematic of the information processing subsystem.

in images, and no geometric information of the scene must be provided
to the Hydra CNN. Both of them reported high prediction accuracy.

Inspired by above-mentioned works, we design the MSCNN to ob-
tain the plankton detection and observe the living status simultaneously,
and Fig. 5 shows the corresponding model. The proposed MSCNN is a
dual-task network. The first function of the work is to detect the shape
of each plankton, and this information will be used in the future to
calculate the size spectra. The other function is to obtain the density
map of plankton. In contrast to the detection result, the density map
shows the distribution situation of the plankton (e.g., whether these
plankton are inclined to cluster together or just wandering in solitude).
This information may help biologists in studying the behavior of the
plankton.

Fig. 5 presents the three parts of the network. The first part (blue
color) consists of three convolutional layers. Conv1 and Conv2 layers
have filters of size 7 x 7 with a depth of 32, and the stride and pad are
1 and 3, respectively. Both are followed by a max-pooling layer, with
a2 x 2 kernel size. The Conv3 layer has 5 x 5 filters with a depth of
64. All the convolutional layers are followed by a rectified linear unit.
The three layers are used to learn the low-level features.

The second part (green color) is composed of two deconvolutional
layers and a softmax layer. The deconvolutional layers are used to
upsample the output of the former layer. The kernel size and stride
of both the two deconvolutional layers are set to 2. The output of the
softmax layer is the separate result of background and foreground. In
this case, the output is the plankton detection result.

The third part (pink color) also consists of three convolutional layers,
with the depth of 1000, 400, and 1, respectively. The stride and kernel
size of these layers are all 1. In this way, we use a fully convolutional
network, which allows the different sizes of the input image. The output
of the last layer is the density map.

In consideration of the compatibility of the computing unit (NVIDIA
Jetson TX2), we constrain the input size to 72 x 72, although the
network allows any input size. The original image is divided into several
patches. Each patch passes forward the network separately, and they
are combined together to obtain the entire result image.

C. Loss Function for Multitask

The proposed MSCNN is trained in the manner of multitask learning.
The loss between the estimated density map and its ground truth is
calculated using the Euclidean loss, defined as Lgensity

Ny

> |[Fuen(P;, 0) = Di(P) ] (1

i=1

1

Ldensily = IN
u

where N, is the number of training samples, and O is a set of network
parameters. P; is the ith patch, Fy,(P;,O) is the estimated density
map of P;, and D (P;) is the ground truth of Fye,(F;, O).
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Fig.5. Proposed MSCNN model.
(b)
Fig. 6. Preliminary experiment for data collection. (a) Offshore test. (b) Several selected training images.

Meanwhile, the Euclidean loss between plankton detection result
and the ground truth is defined as Lgetection

Ny

1
L getection = W Z Hcht(Pi7 O) — D, (R)HQ

i=1

@)

where Fye(P;, O) is the predicated detection result of P;, and Dy (P;)
is the ground truth of Fye(P;, O).
Finally, the total loss of the MSCNN is defined as follows:

Lot = M density + A2 Letection ()

where A, and A, are weights to balance the contribution of the two loss
functions. In this paper, we set A; = 0.3 and A, = 0.7, for we mainly
aim to get the plankton detection information precisely.

IV. EXPERIMENTAL RESULTS

A. Data Set

To collect abundant training data, we apply the plankton monitoring
system in waters for several days. Many underwater videos are col-
lected. Then, the videos are screened manually to select the frames that
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(a). .

original image

contain different kinds and situations of plankton as the training data.
In this application, the number of remaining frames is 5964. Fig. 6
shows the experimental field and several selected images.

The remaining images are then annotated as follows by three people:
a single red dot marked at the center and a white area labeled for the
shape of each plankton. The labeled white ground truth is used to train
the plankton detection task. To get the ground truth density map, for an
image I, D, ; is defined as a sum of Gaussian functions centered on
each red dot annotation

Dis(p) =Y N(plp,d) @)

pEA[

where A; is the set of 2-D points annotated for the image [, and
N (p|u,d) represents the evaluation of a normalized 2-D Gaussian
function, with p and § representing the mean and variance, respectively,
atthe coordinate defined by p. In this paper, J is set to 15 empirically and
1 is zero. Further, the total object count /N; can be directly computed
by integrating the density map values in D;_; over the entire image as
follows:

Ny =Y Dis(p) )

pel

where N; can be further used to rectify the counting number of the
plankton detection.

B. Training and Testing

Training and evaluation of the MSCNN are performed on a work-
station with two NVIDIA GTX 1070 Graphics Processing Units (8G)
using the Caffe framework and a cuDNN library. The pretrained model
is then transferred to the embedded NVIDIA Jetson TX2 for an under-
water in situ detection task.

In the training procedure, we followed the experimental setup pro-
posed in [55], by using only the training and validation sets for learning.
For each original input image, we randomly extract 100 patches with
the size of 115 x 115, and then resize them to 72 x 72 for feeding them
into the network.

C. Subjective Evaluation

Fig. 7 depicts several original underwater images captured by our
imaging system. Group (a) and (b) images reflect the situation of a fresh
pool, and the original image in Group (c) is captured in the nearby river
of the aforementioned pool. To illustrate the performance of MSCNN,
the ground truths of the plankton detection and distribution density map
are displayed together with the predicated result of the MSCNN. We
compare the result with the traditional adaptive thresholding method
because no other similar network-based plankton detection work is
available.

Plenty of plankton live in the field as illustrated in all the original
images, whereas the small-sized plankton are more than the large-sized
plankton. Moreover, constantly massive suspended particles make the
plankton detection mission a difficult one. This “marine snow” from the
plankton even by human eyes is hard to separate. However, with several
deep CNNs, the MSCNN works well in the background and foreground
separation. It is clear that our method detects most of the plankton from
the background, even those in the dark area. By contrast, the adaptive
thresholding method only successfully detects the apparent plankton,
thereby omitting the plankton in the dim area and not very bright. No-
tably, an unknown kind of plankton, with a chain shape (marked in the
yellow box), is presented in the images of Group (c). Considering that
this kind is not labeled in the learning data set, the corresponding detec-

ground truth of density map predicated density map

plankton detection of
our method

ground truth of density map

ground truth of
plankton detection

| .

original image

plankton detection of
adaptive thresholding

predicated density map

plankton detection of
our method

ground truth of density map

ground truth of
plankton detection

| H

original image

plankton detection of
adaptive thresholding

predicated density map

plankton detection of
our method

ground truth of
plankton detection

plankton detection of
adaptive thresholding

Fig. 7.
method.

Results of the proposed MSCNN model and adaptive thresholding

tion result omits such kind of plankton. This indicates the importance
of the abundant data set for deep learning.

Moreover, the density map clearly shows the living status and trend
of the plankton. The middle of the first two group of images has some
food, which may be preferred by small-sized plankton. Thus, the small-
sized plankton are clustered around the food. This behavior is well
indicated by the density map ( the cluster center is most brilliant in the
density map), but cannot be illustrated by the detection result. No food
is presented in the images of Group (c), so few plankton are imaged
in this field. Furthermore, we can deduce that the plankton are just



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

——ground truth
|—4—our result

—+—ground truth
—¢—our result

Fig. 8.

IEEE JOURNAL OF OCEANIC ENGINEERING

~+— ground truth
—+—our result

——ground truth
—o— our result

Ground truth and plankton size spectra calculated by the proposed system at different times of the same plankton group. The x-axis and y-axis indicate

the volume of the plankton and the counting number of the plankton that belong to such size, respectively. The interval among (a), (b), (c), and (d) is 30 min.

TABLE V
OBJECTIVE EVALUATION OF THE PLANKTON DETECTION

Method MAE MSE PSNR
Adaptive thresholding 1.43 149 4641
MSCNN 0.53 0.62  51.78

wandering around with the help of the density map, because there is
no clustering center.

D. Objective Evaluation

An accurate detection of the plankton is the key point of the work,
which will impact the calculation of the biomass size spectra directly.
We evaluate the work with three metrics to adjust the accuracy of the
plankton detection more precisely. These metrics are mean absolute
error (MAE), mean square error (MSE), and peak signal-to-noise ratio
(PSNR), which are commonly used for object counting [54], [56], [57].
They are defined as follows:

1 w ; )
MAE:W;\D — D (6)
1
MSE = > (D! - D#)? (7)
I=1
PSNR = 10log,, (ﬂ) (8)
MSE

where W is the total number of testing frames, and D¢ and D# are the
predicated and ground truth images, respectively. All the three metrics
indicate the difference between the ground truth and the predicated
results. Small MAE and MSE and large PSNR indicate an improved
performance.

In our practice, we randomly select 100 pictures to calculate the three
measures. The results are summarized in Table V. Both the MAE and
MSE measures of our results are lower than 1 and nearly one-third of

the traditional adaptive thresholding method. If we combine this index
with the subjective result shown in Fig. 7, then we can deduce that the
difference between the result of the MSCNN and the ground truth is
caused because the detection result of the MSCNN is slightly plump.
A deeper network, which is our further work, may solve the problem.

E. Size Spectra

Once plankton are correctly detected by the MSCNN, we can use
such information to count and compute the final size spectra. Further-
more, in consideration of the shooting angle, the same plankton is
variable in different images. For example, a long ellipse-shaped plank-
ton may be small when it is vertical to the camera or large when it
is parallel to the camera. Thus, we calculate the average of the three
sequential images to plot the size spectra. Moreover, the three sequen-
tial images are captured by the three different magnification lenses.
Resizing is preformed to normalize the resolution.

Fig. 8 exhibits a series of calculated size spectra of the fresh pool,
calculating every half hour in the same afternoon. The plankton, with
the size of approximately 12.5 (log, (m?)) and the body length of
about 22 pm, are predominant in the ecosystem. In the first two images,
some food is found in the center. Thus, the overall biomass is large.
We can find in the corresponding size spectra figure that the curve is
plump. Afterward, the biomass has decreased when the food is eaten
up. Few plankton are captured in the view. The corresponding size
spectra figure is steep up and down.

Notably, the size spectra calculated via our method is slightly larger
than the ground truth. A one-size shift to the right from the ground
truth is observed. The analysis of the detection result of the MSCNN
(see Fig. 7) may provide the truth, which is that the predicted plankton
shape is slightly plump. However, we can easily rectify the size spectra
in practice.

V. CONCLUSION AND DISCUSSION

In this paper, an in situ plankton monitoring system is proposed. The
system contains an imaging unit and an information processing unit.
Darkfield illumination is applied to enhance the image contrast, and
an automodified multiple magnification imaging system is designed
to capture the image of a wide range of different-sized plankton. The
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images are then subjected to the MSCNN to detect individual plankton
and density distribution.

The captured images confirm the effectiveness of the darkfield illu-
mination and multiple magnifications. The size spectra figures for the
fresh pool are presented to show the performance of the whole system.
In addition, the introduction of the distribution density provides vivid
information on the plankton community, which could be very helpful
in studying the behavior of aquatic organisms. However, the accuracy
relies heavily on the abundant data set because the processing method
is based on the CNN. Additional images must be collected to improve
the performance. That is, using added data indicates an improved per-
formance of this system.
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