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Abstract. In the presence of a-stable noise, the logical stochastic resonance (LSR) phenomenon in a class
of double well nonlinear system is investigated in this paper. LSR effect is obtained under a-stable noise.
The probability of getting correct logic outputs is used to evaluate LSR behavior. Four main results are
presented. Firstly, in the optimal band of noise intensity, Gaussian white noise is considered a better
choice than heavy tailed noise to obtain clean logic operation. But at weak noise background, the success
probability of getting the right logic outputs is higher when the system is subjected to heavy tailed noise.
Secondly, it is shown that over the entire range of noise variance, the asymmetric noise induced LSR
performs better than that induced by the symmetric noise. Furthermore, we find which side the tail skews
also affects the correct probability of LSR. At last, the fractional Fokker-Planck equation is presented to
show when the characteristic exponent of a-stable noise is less than 1, LSR behavior will not be obtained

irrespective of the setting for other parameters.

1 Introduction

Stochastic resonance (SR) is a noise-induced phenomenon
that demonstrates the interplay of noise and nonlinear
system will amplify and optimize the feeble input sig-
nal. Benzi et al. [1-3] pioneered the concept in one of
their seminal papers which addressed the problem of the
periodically recurrent ice ages. After that, SR has been
found in a large number of areas, ranging from optical,
electronic to magnetic systems. Hanggi extended SR to
biology realm, and investigated how noise can enhance
detection of weak signals and help improve biological in-
formation processing [4]. Gammaitoni et al. [5] have writ-
ten an extensive review for the classical SR theory and its
importance applications.

Recently, Murali et al. [6,7] introduced the concept of
logical stochastic resonance (LSR) wherein the output of a
bistable dynamical system can be a logical combination of
the two input signals when the system is driven by an opti-
mal band of Gaussian white noise. The study pointed out
an intriguing possibility in the realization of new paradigm
of integrated circuits to deal with the tighter noise mar-
gins. As an emerging concept, LSR has attracted a lot of
attention from different research groups. Animesh et al.
found that dynamical behavior equivalent to LSR can also
be obtained without noise [8]. Remo et al. [9] extended
the study of LSR from the bistable system to the multi-
stable (tri-stable) system given by piecewise functions and
obtained XOR logic. Kohar and Sinha [10] demonstrated
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that in the optimal range of noise, the asymmetric bistable
fourth order system behaves like a memory device as well
as a logic device. Dari et al. [11,12] and Hellen et al. [13]
studied the LSR phenomenon in synthetic gene network.

According to the central limit theorem, the noise in
physical systems is usually considered to be the stan-
dard Gaussian distribution. Nevertheless, the empirical
evidence suggests that there is a need to consider vari-
ous types of noise. Zhang et al. [14] exploited the LSR
phenomenon in a class of triple-well systems induced by
additive or multiplicative Gaussian colored noise. Zhang
et al. [15,16] investigated the effects of Ornstein-Uhlenbeck
noise and 1/f noise on LSR. The dichotomous noise in-
duced LSR in energetic and entropic systems is studied by
Das and Ray in reference [17].

As the generalization of Gaussian noise, a-stable noise
(also known as Lévy stable noise) has often been used
to describe the impulsive characteristic of noise in real-
world applications. There has recent been more attention
on nonlinear system driven by a-stable noise. The re-
lated studies include M-ary signal detection via a bistable
system in the presence of Lévy noise [18], multiplicative
Lévy noise in bistable systems [19], and evaluation of
an asymmetric bistable system for signal detection un-
der Lévy stable noise [20]. Conventional SR is proved
can be obtained and detected by common quantifiers
in presence of a-stable noise by Dybiec and Gudowska-
Nowak [21,22]. Szczepaniec and Dybiec [23] demon-
strated that non-equilibrium a-stable noises, depend-
ing on noise parameters, can either weaken or enhance
the non-dynamical stochastic resonance. Tang et al. [24]


https://vpn2.seu.edu.cn/,DanaInfo=www.epj.org+
https://vpn2.seu.edu.cn/10.1140/epjb/,DanaInfo=dx.doi.org+e2014-50193-2

Page 2 of 7

o
3

Eur. Phys. J. B (2014) 87: 117

o
[
T

L (f;alﬂi V 5)

o
)
T

01F

—p=1

L&ahrd)

Fig. 1. Probability density function of a-stable distribution
(b) varying 8 whena=1,v=1,0 =0.

investigated stochastic resonance in an ensemble of
bistable systems under stable distribution noises and non-
homogeneous coupling. Xu et al. [25] characterized the in-
fluences of the intensity and stability index of Lévy noise,
as well as the amplitude of external signal on the occur-
rence of stochastic resonance phenomenon. However, LSR
behavior under a-stable noise has never been reported in
the open literature.

In this paper, we study the LSR phenomenon in
double-well system subjected to a-stable noise. How the
characteristic of a-stable noise affects LSR is analyzed and
numerical stimulated explicitly. The outline of the paper is
organized as follows: a bistable system depicted by piece-
wise function and a-stable noise is described in Section 2.
Section 3 presents the numerical stimulation and discus-
sion of a-stable noise induced LSR. We close this work
with some final remarks and conclusions in Section 4.

2 Models and measurements

Considering an overdamped Brownian particle in a very
simple nonlinear system [7], the Langevin-type equation
is given by

&= —ax + bg(x) + &(t) + I(t), (1)
where a and b are the nonlinear parameters, g(z) is a
piecewise function with the form:

r T <

T x ST KTy

g(x) (2)

Ty T > Ty,
and x;, x, are the lower and upper
respectively.

£(t) is a-stable noise. The a-stable distribution is a
four-parameter family of distributions denoted by L (&;
a, B, 7, §). The first parameter a € (0,2] is called the
characteristic exponent, which describes the tail of the
distribution. The skewness parameter 3 € [—1, 1] specifies

thresholds,

L (& «, B, v, §). (a) Varying a when [

whether the distribution is right (5 > 0) or left (8 < 0)
skewed. The last two parameters are the scale v > 0, and
the location § € R. D = v represents the noise intensity.
One of the nice properties of the a-stable distribution is
that it generalizes the classical central limit theorem. The
family of a-stable distribution includes the following dis-
tributions as subclasses: Gaussian distribution with o = 2,
Cauchy distribution with « = 1, 8 = 0 and Lévy distri-
bution with o = 1/2, 8 = 1. Except for these three cases,
the density function of a-stable random variable cannot be
given in closed form. However, the characteristic function
can be given as follows:

p(t) = Eexp(it§)
_ {exp (= [t|* [1—iBsign(t) tan (79)]+idt) a#1
a=1.
(3)

exp (—v [t| [L+iBsign(t) 2 log |t|] + idt)
In this paper, the Janicki-Weron algorithm [26] is em-
ployed to generate the a-stable distribution random num-
bers. With no loss of generality, we assume the location
0 = 0. Figure 1 depicts the typical probability density
function of the a-stable distribution L (§; «, 3, 7, §).

1(t) is composed by two trains of aperiodic pulses: I (¢)
and I3(t), with I1(t) and I2(t) encoding the two logic in-
puts. Since the logical value of I1(t) and I2(¢) can be ei-
ther 0 or 1, the combination of these two inputs can be
(0,0), (0,1), (1,0) and (1,1). And the input sets (0,1) and
(1,0) give rise to the same I(t).

The logic output of the system is determined by its
state, e.g., the output can be considered a logical 1 (or 0)
when it is in one well z (or z_), and logical 0 (or 1) when
it is in the other well 2z_ (or z;). For a given input set
(I1, I), the logical operation of the system can be checked
based on the true Table 1. In this paper, we value a = 1.8,
b=3, z, =13, 2y = —0.5 to get OR (NOR) logic, and
a=18b=3,2, =05, 2, = —1.3 to get AND (NAND)
logic. For the convenience of numerical computation, we
consider the two inputs I1(t) and I(t) to take a value
of —0.5 when it is considered to be logical 0, and a value
of 0.5 when it is considered to be logical 1.
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Table 1. Relationship between two logic inputs and the logic
output of the four fundamental AND, NAND, OR, and NOR
gates. The combination of the four fundamental logic gates can
be used to construct any logic circuit.

Input set (I1, ) OR NOR AND NAND

(0,0) 0 1 0 1
(0,1)/(1,0) 1 0 0 1
(1,1) 1 0 1 0
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Fig. 2. Panels from top to bottom, the input signal I(¢), re-
sponse of the system to Gaussian noise, responses to a-stable
distribution noise with a = 2, 1.5, 1, respectively. Here, the
intensity of Gaussian noise D = 0.8, 3 =0, v = D/v/2.

3 Simulations
3.1 Effect of characteristic exponent o on LSR

Firstly, we consider the effect of characteristic exponent
« on LSR. Characteristic exponent a describes the tail of
the distribution. When o = 2, the distribution converges
to Gaussian distribution with variance 02 = 242. When
«a < 2, « specifies the asymptotic behavior of the distri-
bution. With the decrease of «, three changes occur to
the density: the peak turns higher, the region flanking the
peak turns lower, and the tails turn heavier (Fig. 1a).

Figure 2 shows the responses of the system (1) sub-
jected to Gaussian white noise and a-stable noise with
different characteristic exponents, respectively. It can be
seen that the a-stable noise can also induce LSR phe-
nomenon in nonlinear system.

To show more directly, we calculate the probability of
correct logic output, P, to evaluate the LSR effect. Mod-
ified Murali et al. [7] experiment setups, P is obtained as
follows: use the random permutated combination of 4 log-
ical inputs sets (0,0), (0,1), (1,0) and (1,1) to drive the
system over some reasonably time 7 for NV runs, with each
input set driving for 7/4. In each run, sample z(¢) for the
four input sets. Calculate the correct probability P;, the
ratio of correct logical output number of sampled z(t) to
the total number of sampled z(t), in each run. Specially,
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Fig. 3. The success probability P of logic gate OR versus
scale v with different characteristic exponent o = 2, 1.5, 1,
0.5, respectively. Here, 5 =0, 6 = 0.

in each single input set, the calculation error of 1 ~ 3%,
which is caused by the relaxation time, is acceptable. In
order to reduce the effect of relaxation time, we sample
x(t) in different input set with a reasonable time delay. In
this strategy, the probability P is given by

pP= ij—vlpi. (4)

For a fixed skewness 3, the success probability P as a
function of the scale « is plotted at four different char-
acteristic exponent a (Fig. 3). It shows that the peak of
correct probability is lower when the system is driven by
heavy tailed noise than it is driven by Gaussian noise at
the optimal band of noise density. But the important point
is that at weak noise background, the correct probability
driven by heavy tailed noise is larger than which is driven
by Gaussian noise. The peak of success probability shifts
to left as the characteristic exponent gets smaller. At the
same time, Figure 4 indicates that when the characteristic
exponent is too small, i.e. &« < 1, the phenomenon of LSR
disappears regardless of the value of other parameters.

3.2 Effect of skewness 3 on LSR

We now consider how the skewness [ affects the phe-
nomenon of LSR. Except for the characteristic exponent
a, skewness 3 is another important parameter of a-stable
distribution. If 3 < 0, the distribution is skewed with the
left tail of the distribution heavier than the right, and vice
versa. If § = 0, the distribution is symmetric (Fig. 1b).

Figure 5 shows the responses of the system (1) sub-
jected to Gaussian white noise and «-stable noise with
different skewness 3 when the characteristic exponent
a = 1.5. It indicates that LSR phenomenon can be in-
duced by asymmetric a-stable noise and the results is even
better than symmetric distribution noise.
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Fig. 4. The success probability P of logic operation OR versus
scale v and characteristic exponent o with different skewness
B =0, 0.5, 1, respectively (from top to bottom).

Figure 6 demonstrates in relatively wide window of
moderate noise, the system yields logic operation with
near center probability, i.e. P ~ 1, when |3 = 1. We
also note there are two peaks of success probability when
a = 1.5, || = 1, since the first peak is too low (<0.5), its
effects on the output is ignored. The important point is
that when the characteristic exponent « is big,i.e. a > 1.8,
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Fig. 5. Panels from top to bottom, the input signal I(t),
response of the system to Gaussian noise, responses to a-
stable distribution noise with 8 =0, 0.5, 1, respectively. Here,
a = 1.5, the intensity of Gaussian noise D = 0.8, v = D//2.

the skewness 3 has less effect on the results of responses.
And in the small « regime, the skewness § has stronger
effect on the output of the system (Fig. 7). This is because
change in § induces only minor changes in the shape of
a-stable density when « is large. Even though, we stress
that no matter what the characteristic exponent a values,
the asymmetric stable distribution noise is better to stim-
ulate LSR phenomenon than the symmetric noise. Also,
we find that which side the distribution lies also affects
the result of LSR. More specifically, the plateau of the
moderate noise is wider and the peak correct probability
is higher at 8 = 1, when the nonlinear system obtains
OR logic. On the other hand, the behavior of LSR phe-
nomenon to get AND logic performs better when § = —1.

3.3 Discussion

In this section, we will further analyze the characteris-
tic of LSR driven by a-stable noise. Figure 8 depicts the
length of noise scale v to get correct logical output versus
characteristic exponent a and skewness (. It shows that
when a < 1, it is not possible to get LSR phenomenon.
This can be explained by fractional Fokker-Planck equa-
tions (FFPEs). For the system (1), when § = § = 0, the
statistically equivalent description for the dynamical prob-
ability density function (PDF) p(z,t), is governed by the
following FFPE:

op(xz,t) 0 o7
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Fig. 6. In the OR (a) and AND (b) gate, the success probability P versus scale v is shown with the characteristic exponent
a = 1.8 and a = 1.5 (from top to bottom), with 5 = —1, -0.5, 0, 0.5, 1, respectively.

where the Riesz space fractional derivative term can be
defined through the Liouville-Weyl derivative as [27]:

0%p (x,t) -1
dlz|®  2cos(ma/2) (2 —a)
2 o ’
% 0 / p(x 7t)_1d$/, (6)
6(E2 0o |x — ;1;’|a
where I" denotes the Gamma function. It can be inferred
from (5) and (6), when « < 1, the effective potential sys-
tem is no longer bistable. So no matter how the other
parameters value, LSR behavior cannot be obtained. At
the same time, when o > 1.8, skewness has little effects on
the correct probability. When « values between 1.8 and 1,
the influence of skewness is distinct (Fig. 8). Asymmetric
noise is experimented to be better to get the reliable logi-
cal output. And the higher the absolute value of skewness
gets the more reliable the logical output becomes. Figure 8
shows when the logical operation is OR, the right skewing
distribution noise is better to drive the system to obtain
LSR phenomenon, vice versa. The result is the same as
analyzing the skewness parameter alone.

4 Conclusion

In this paper, LSR phenomenon in a bistable system
driven by a-stable noise is investigated. a-stable distribu-

tion includes many well-known distributions such as the
normal distribution and the Cauchy distribution as special
cases. We present that a-stable noise can be used to in-
duce LSR, which display richer dynamical behaviors than
systems driven by only white Gaussian noises. Four ma-
jor results are presented. First of all, with fixed skewness
parameter, the peak of correct probability to get right log-
ical output decreases as the characteristic exponent gets
smaller. But at the same time, heavy tailed noise can get
better logical outcome at a smaller noise level. Secondly,
with fixed characteristic exponent, asymmetric distribu-
tion noise can realize higher correct output probability
than symmetric distribution noise. Although the effect of
skewness is not obvious when « is bigger than 1.8, it be-
comes significant when a < 1.8. Thirdly, which side the
tail skews affects the reliable of logical outcome too, and
the distribution with the left tail heavier than right be-
haves better to get AND logic operation, vice versa. At
last, FFPE is displayed to show that when o < 1, no mat-
ter how other parameters value, LSR behavior will not be
obtained driven by a-stable noise.

This work was supported by the NSF of China (Grant
Nos. 61325018 and 61272379). The authors thank the refer-
ees for their very valuable suggestions.
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