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a b s t r a c t

In this paper, we discuss how to get adaptive logical stochastic resonance (LSR) by modulating the
parameters of nonlinear system. The effects of linear and nonlinear coefficients of a quartic-bistable
system on the system's response to feeble input signals in noisy background are investigated. Genetic
Algorithm is applied to search for the optimal system parameters in the given noise. The success
probability of obtaining desired logic output is used as the fitness function. Experimental results show
that the system can achieve robust logic operation in a wide range of noise intensity by adjusting the
parameters. The study might provide an example of the application of parameter-induced LSR in
engineering practice.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Benzi et al. [1–3] firstly put forward the concept of stochastic
resonance (SR), which is brought up to address the problem of the
apparent synchrony between glacial periods and the variations of solar
energy influx. Since then, SR has continuously attracted considerable
attention from various fields and it has found many applications in
electric circuits, lasers, chemical systems, etc. Gammaitoni et al. [4]
have written an extensive review for the classical SR theory and its
important applications. In particular, several novel types of stochastic
resonance which are especially relevant to neuro-computation are
discovered recently, to name but a few, delayed-induced multi-
resonance [5,6], coherence resonance [7–9], pacemaker induced sto-
chastic resonance in neuronal systems [10–13], etc.

Recently, Murali et al. [14] introduced the concept of logical
stochastic resonance (LSR). They investigated the response of a
simple threshold detector to input signals, consisting of two
random square waves, and showed that the interplay of non-
linearity and moderate density of noise can yield logic behavior
(NOR and NAND). Another research of Murali et al. [15] demon-
strated LSR via a circuit implementation using a linear resistor, a
linear capacitor and four CMOS-transistors.

LSR suggests a new way of implementing reconfigurable and
reliable logic gates in the presence of noise. Although LSR is a recent
idea, the number of studies on LSR is growing fast. For instance,
Zhang et al.[16,17] investigated the effects of OU noise and 1/f noise
on LSR. Animesh et al. [18] found that dynamical behavior equiva-
lent to LSR can also be obtained without noise. Remo et al. [19]

extended the study of LSR from the bistable system to the multi-
stable (tri-stable) system given by piecewise functions and obtained
XOR logic. Zhang et al. [20] proposed that the LSR phenomenon in a
class of 3-well system can be successfully induced by additive or
multiplicative Gaussian colored noise, and obtained the approxi-
mate Fokker–Plank equation by using decoupling approximation.
Wang et al. [21,22] investigated LSR phenomenon in the presence of
stable distribution noise and realized Set–Reset latch operation in a
bistable system driven by Ornstein–Uhlenbeck noise. Studies about
LSR in chemical, nanomechanical, optical and biological systems
have been investigated by Sinha et al. [23], Guerra et al. [24],
Zamora-Munt et al. [25] and Ando et al. [26].

However, all the LSR phenomena are gained by modulating noise
density in the above studies. Although adding noise to get LSR is a
useful method in the context of “under-resonant”, wherein the back-
ground noise strength is lower than needed, this method is not
appropriate under “over-resonant” circumstance, wherein the back-
ground noise is bigger than needed and cannot be filtered. Xu et al.
proposed that tuning the parameters of the bistable system can
achieve conventional stochastic resonance and pointed out that
although increasing noise intensity will enhance the system response
speed, the output signal-to-noise ratio is degraded [27]. At the same
time, according to the information theory, at high level of noise, the
amount of information in the output signal will decrease with the
addition of more noise [28]. So in order to get best LSR, tuning system
parameters are a better choice than modulating the background noise.

In this paper, we propose achieving LSR by adjusting the
system parameters and apply Genetic Algorithm to search for
the optimal system parameters. The outline of the paper is
organized as follows: the quartic-bistable system used in this
paper is depicted in Section 2, Section 3 studies the effects of the
linear and nonlinear coefficients, Section 4 proposes self-adaptive
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LSR based on Genetic Algorithm. We finish with final remarks and
conclusions in Section 5.

2. Bistable system based LSR

Without loss of generality, considering an overdamped Brow-
nian particle in a double well potential driven by Gaussian white
noise, the Langevin-type equation is given by

_x¼ � _UðxÞþrþ IðtÞþξðtÞ ð1Þ
where U(x) denotes the reflection-symmetric quartic potential

U xð Þ ¼ �a
2
x2þb

4
x4 ð2Þ

where a and b are the linear and nonlinear coefficients of potential,
r denotes the bias constant, and I(t) denotes the low amplitude input
signal consisting of I1(t) and I2(t), with I1(t) and I2(t) being two-value
signals. To facilitate subsequent treatment, we set I1(t) and I2(t) to be
logical 0 when its value is �0.5, and logical 1 when its value is 0.5. ξ
(t) is a zero-mean, Gaussian white noise with autocorrelation
function ξðtÞξð0Þ� �¼ 2DδðtÞ, with D being the strength of the noise.

In system (2), there are two potential wells at xþ40 and
x�o0. For logic OR, we define the output to be logical 1 when it is
in the well at xþ , and logical 0 when it is in the other well at x� .
Similarly, we can get AND, NAND and NOR by defining the two
wells' different logical meanings. The logical operation of the
system can be checked based on the truth table (Table 1).

3. Effects of parameters on LSR

Firstly, we study the effects of aand b on the responses of LSR in
the bistable system. The outcomes of Eq. (1) with three different
sets of a and b are displayed in Fig. 1. According to potential well
depth given by ΔU ¼ a2=4b, the corresponding potential barrier
height for the three different sets is 5, 0.05, and 0.42. It can be seen
that for the given value of bias r and noise intensity D, the set of
a¼0.5 and b¼0.15 brings in a clear OR logical operation (Fig. 1(d)).
Fig. 1(b) shows “under-resonant” circumstance, where the particle
lacks adequate power to jump to the right well in time, and Fig. 1
(c) indicates “over-resonant” circumstance, where the particle
hops arbitrarily between the two wells.

To be more explicit, we calculate the probability of getting the
right logic output P to indicate the consistency of obtaining a given
logic operation. We quantify P as follows: use the random
permutated combination of 4 logical inputs sets (0, 0), (0, 1), (1,
0) and (1, 1) to drive the system over some reasonable time τ for N
runs, with each input set driving for τ/4. In each run, sample x(t)
for the four input sets we calculate the correct probability Pi, the
ratio of correct logical output number of sampled x(t) to the total
number of sampled x(t). In order to reduce the effect of relaxation
time, we sample x(t) in different input sets with a reasonable time
delay. In this strategy, the probability P is given by

P ¼
PN

i ¼ 1 pi
N

ð3Þ

The success probability P as a function of noise intensity D is
plotted at three different sets of a and b, when r¼0.2, in Fig. 2. It is
clear that when the potential barrier is very low (a¼0.1 and b¼0.05),
the system is sensitive to noise. It can achieve 100% accuracy when
the noise density is small, but once the noise is strong the correct
probability decreases to 0 quickly. On the other hand, when the
potential barrier is tremendously high (a¼1 and b¼0.05), although
the correct probability is almost zero when the noise density is small,
the system behaves better at the strong noisy background than the
system with other parameters. However, we stress that the peak's
correct probability in this circumstance is about 0.3, which is much
lower than a robust operation required. When the parameters are
suitably set (a¼0.5 and b¼0.15), typical LSR phenomenon is
obtained while the correct probability first increases to 100% and
then decreases with the increase of noise intensity.

For OR logic gate, the success probability P as a function of a
and b is plotted in Fig. 3, for the three different noise intensities
D¼0.3, 0.5, and 0.7 when r¼0.2. It shows that the optimal area of
a and b shrinks when the noise intensity gets bigger. And smaller
value of b and bigger value of a may induce more robust logic
operation at high level of noise.

Table 1
Relationship between two logic inputs and the logic output of the four fundamental
AND, NAND, OR, and NOR gates. The combination of the four fundamental logic
gates can be used to construct any logic circuit.

Input set (I1,I2) OR NOR AND NAND

(0,0) 0 1 0 1
(0,1)/(1,0) 1 0 0 1
(1,1) 1 0 1 0
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Fig. 1. From top to bottom, (a) stream of input I1(t)þ I2(t)þξ(t), panels (b)–(d) show
the outcome of the systemwith (b) a¼1, b¼0.05, (c) a¼0.1, b¼0.05 and (d) a¼0.5,
b¼0.15. Here, r¼0.2, D¼0.5. It can be observed that clear OR logic gate operation is
obtained in (d).
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Fig. 2. In OR logic operation, the success probability P versus noise intensity D is
shownwith the bias r¼0.2. The corresponding potential barrier height for the three
different sets is 5, 0.05, and 0.42, respectively for (a¼1, b¼0.05), (a¼0.1, b¼0.05)
and (a¼0.5, b¼0.15).
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4. Parameter-induced LSR

In this section, we will focus on the study of how to realize the
reliability and flexibility of logical operation through adjusting the
parameters of the nonlinear system under a certain noise inten-
sity. We apply the Genetic Algorithm to search for multi-
parameters at the same time. It has been proved that modulating
multi-parameters synchronously will give better result than
searching for the suitable parameter one by one in the conditional
SR phenomenon.

We regard the correct probability P of getting desired logic
operation as the fitness function. Explicit method of how the
Genetic Algorithm is used to achieve the multi-parameters opti-
mization is described as follows:

1) Coding
First of all, searching ranges and accuracy should be set, and then
jointly encoded in the binary form. The search interval for a is [Amin,
Amax], and that for b is [Bmin, Bmax]. Set the search precision to be δ,
so we can determine the corresponding coding length l and k as

2l�1¼ Amax�Aminð Þ=δ
2k�1¼ Bmax�Bminð Þ=δ

(
ð4Þ

The size of chrome is lþk, and the corresponding codeword
alal�1al�2…a1bkbk�1bk�2bk�3…b1 can be obtained. In this work,
we set the system parameters a and b to be in the corresponding
search ranges [0.01, 1.5] and [0.01, 0.5], and δ¼0.01, so l¼8 and
k¼6, the chrome size is 14.

2) Initializing
Set the population size, select individual randomly, and initi-
alize the group. The size of the population is 20 in this paper.

3) Decoding
The individual coding as: alal�1al�2,…,a1bkbk�1bk�2bk�3,…,b1
can be decoded as

a¼ Aminþ
Xl
i ¼ 1

ai2
i�1

 !
Amax �Amin

2l �1

b¼ Bminþ
Xk
j ¼ 1

bj2
j�1

0
@

1
ABmax �Bmin

2k �1

8>>>>>><
>>>>>>:

ð5Þ

4) Fitness evaluation
In this step, substitute a and b obtained in Eq. (5) to solve Eq.
(1) with fourth-order Runge–Kutta algorithm. Then calculate
the correct probability P so as to obtain the individual fitness,
and rearrange the individual order according to the fitness.

5) Selection, crossover, and mutation
Select superior individuals according to Roulette rule, reserving
the individual with best fitness to the next generation, and
with a certain probability Pc of crossover (one-point crossover)
and Pm mutation (alleles) to produce the next generation. In
this work, Pc¼0.8 and Pm¼0.1.

6) Termination
Repeat Steps 3–5 until the set iterative condition is met and
terminate the cycle. The largest iteration number is 200.

In the case when the bias r is kept as 0.2, the optimal system
parameters are searched at different noise intensities, and the result is
plotted in Fig. 4. It is evident that multi-parameter optimization can
obtain clear logic operation in awide range of noise densities. It can be
seen from Fig. 4 that the amplitude of parameter b decreases smoothly
with the increase of D, while a changes greatly and the trend is toward
higher value. This consequence is accordant with Fig. 3.

5. Discussion and conclusion

How the changing of a and b affects the behavior of the bistable
system can be explained by the potential well depth given by
ΔU ¼ a2=4b. Obviously, increasing a or decreasing b will raise the
depth of the potential wells, so the particle needs more power to cross
the higher potential barrier, and vice versa. Further, we also find that
the depth of the potential well is not the only matter that determines
either the system can get the right logic output or not. Experiments

Fig. 3. The density map of the probability P versus a and b is drawn for different
noise densities D¼0.3, 0.5, and 0.7 (from top to bottom), r¼0.2. It shows that the
optimal area of a and b shrinks when the noise intensity gets bigger. And smaller
value of b and bigger value of a may induce more robust logic operation at high
level of noise.
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show that systems with different a and b but same potential well
depth respond differently to the same noisy signal. An explanation of
this phenomenon is obtained by examining the time taken by the
system to cross over the barrier from one well to the other.

In conclusion, parameter-induced LSR in a class of bistable system
is studied in this paper. The effects of the parameters of the stochastic
system on the response to noisy input are examined, and we apply
Genetic Algorithm to search for the best parameters synchronously.
Numerical stimulation and experiments show that when the back-
ground noise is strong, we should increase a and decrease b to
maintain the best state. And the parameter-induced LSR proposed in
this work may obtain high robust logic operation in a relatively wide
range of noise intensity. Despite LSR has been pointed out to be the
intriguing method to help designing large scaled integrated circuits,
the range of applicability of LSR is not limited to electronics. In fact it
has greater potential in the context of newer paradigms of comput-
ing (in particular molecular, chemical or DNA), where the intrinsic
noise cannot be eliminated. The characteristic of adjusting the
parameters can yield LSR in certain noise intensity which may have
practical meaning in these circumstances.
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