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Abstract Owing to light attenuation and high back-
ground noise, underwater images are significantly
degraded, which hiders the development of underwa-
ter exploration. However, noise itself can be used to
counter noise. In this paper, we apply logical stochas-
tic resonance (LSR) to help detect weak objects from
low-quality underwater images. On the basis of anal-
ysis of the physical character of underwater images,
three models, namely basic dynamical system driven
by Gaussian noise, basic dynamical system driven
by Ornstein—Uhlenbeck (OU) noise, and dynamical
system with extra delay loop, are chosen to study
the performance of LSR-based object detection. The
main workflow of LSR-based object detection is intro-
duced. To analyze the performance of LSR, we per-
form explicit experiments and systematically discuss
the interplay of additional noise with the system param-
eters. LSR is proven to be helpful in detecting weak
objects from low-quality underwater images. Both OU
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noise and extra delay loop will help the whole system
to maintain stability in a higher noisy background.

Keywords Logical stochastic resonance - Weak
object detection - Underwater image processing

1 Introduction

The intricacies presented by the underwater environ-
ment are far more complicated than those by the ter-
restrial environment [1]. The radiance of underwater
objects is highly attenuated and is usually overwhelmed
by the background noise, making visually based under-
water object detection difficult [2,3]. Classical image
pre-processing methods, such as denoising and contrast
enhancement, cannot obtain good effects in processing
such degraded images [3,4]. Thus, a specific method
that can handle the underwater weak object detection is
badly needed. Underwater object detection is by nature
weak signal detection. Underwater weak object detec-
tion is possible by conducting theoretical study on the
physical character of the original signal and then pro-
cessing using a corresponding method.

The most difficult part in processing underwa-
ter image is the high-intensity background noise and
low signal-to-noise ratio (SNR). To counter the high-
intensity background noise, the use of stochastic reso-
nance (SR) is quite intuitive. SR is the most significant
noise-useable theory [5]. In the last decades, SR has
proven its usefulness in different kinds of information
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systems [6], such as electrical systems [7], biological
systems [8], and neural networks [9]. SR has been also
used to enhance the image quality. For example, Fleis-
cher et al. recovered noise-hidden images in a self-
focusing medium [10]. Monifi et al. reported chaos-
induced SR in an optomechanical system [11]. Jhaetal.
used SR to realize noise-induced contrast enhancement
on singular values [12]. More applications, such as fea-
ture extraction in low-quality fingerprint images [13],
logo extraction [14], and magnetic resonance image
enhancement [15], have also been reported.

With the development of SR research, some exten-
sion performances have also been studied, including
noise-induced resonance [16], coherence resonance
[17], and ghost resonance [18]. Among the explo-
rations, logical stochastic resonance (LSR) is an impor-
tance branch. LSR allows a nonlinear system to work
as a reliable logical element to give logical output of
weak input, with the help of moderate noise [19,20].
Although this is a young theory, it attracts immense
attention from researchers and is useful in different
kinds of applications, ranging from noise-freed LSR
[21,22], LSR in synthetic genetic networks [23,24], to
LSR in triple-well potential system [25]. Given that
the detection problem is logical, LSR may be suit-
able for dealing with such a problem. However, how
to design the LSR nonlinear system corresponding to
the typical background noise character is still an open
problem. Back to the underwater image object detec-
tion issue, optimal LSR system designation should
refer to the complicated underwater ambient surround-
ing. To analyze the interplay of background noise
with the LSR system, the present work discusses three
LSR models, namely the popular classical quartic-
bistable dynamical system subjected to Gaussian noise,
the quartic-bistable dynamical system subjected to
Ornstein—Uhlenbeck (OU) noise, and the dynamical
system with extra delay loop. The goal is to propose
an optimal system which can accurately detect weak
objects in degraded underwater images.

The rest of this paper is organized as follows. In
Sect. 2, the underwater light propagation process is
systematically analyzed and three different nonlinear
dynamics are introduced. In Sect. 3, the main frame of
the LSR-based image object detection and experiment
approach are described. In Sect. 4, the explicit exper-
imental results are presented. Finally, the conclusions
of the study are elaborated in Sect. 5.
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2 General model
2.1 Basic dynamical system

Given that this study is only focused on object detection
and extraction from a heavy noise background, only
two logical states (0 and 1) are needed. We consider
logic 0 as the background and logic 1 as the object.
With these two states, we choose the popular quartic-
bistable dynamical system [26] as the base nonlinear
system, which is governed by (1):

Uy = 2t~ 92 (1)
x_4x 2x rx,

where U (x) represents the bistable potential system. a
and b are the coefficients of linear and nonlinear terms,
respectively. When the bias r is zero, the system (1)
has two stable states at x4+ = +.+/a/b and a potential
barrier with AV = a?/4b at x = 0. r has the effect
of asymmetrizing the two potential wells to achieve
different output logics.

Figure 1 shows the potential well of system (1) with
different bias r. when the bias r is changed, the bistable
states become asymmetric and the potential barrier is
changed. When the potential well is symmetric and
the barrier is not high, the particles jump arbitrarily
between the two wells under the effect of additional
power offered by the noise. However, according to
Langevin dynamics, if the potential well is not sym-
metric, the particles have a greater likelihood of jump-
ing into and staying in the low-potential well. Thus,
by helping the corresponding pixels jump to the tuned
right potential well, we can detect the weak signal and
manage the output logic according to specific applica-
tions at the same time.

2.2 MODELI: basic dynamical system driven by
Gaussian noise
When the system is driven by a weak signal subjected

to Gaussian white noise, the Langevin function of (1)
can be written as follows:

x=Ux)+ 1) + Dn(t), )

with the nonlinear system U (x) is given by (1), n(t)
denotes the Gaussian white noise with autocorrelation
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Fig. 1 The potential U (x) for different bias r

function (n(¢)n(0)) = 2D4§(¢), and D is the strength
of the noise. I(¢) is the low-amplitude input signal.
t(t > 0) is the index of sampling. When [ (¢) is a time-
varying signal, f can represent the sampling time. When
1(t) represents an image signal, ¢ can be considered as
the pixel coordinate.

2.3 MODEL2: basic dynamical system driven by OU
noise

In most cases, the additive noise is considered to have
a correlation length shorter than any other length scale
in the systems, so that it can be represented as delta
correlated. However, this idealization has never been
realized in the real physical world. Particularly, under-
water researchers have proposed that the ambient noise
affects the imaging in a correlated way [27]. There-
fore, colored noise should be considered as having a
constructive role underwater. The current work opts to
study OU noise to explore the influence of noise inher-
ent correlation effect on the system result.

The basic dynamical system is still (1). When it is
driven by the original signal subjected to OU noise, the
Langevin function can be written as:

X =U) + 1)+ y@), 3)

where U (x) is (1), and 7(¢) has the similar meaning
with (2). The noise y(¢) is an OU stochastic process
driven by Gaussian white noise with zero mean and
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Fig. 2 The three components of underwater optical imaging:

direct component (straight line), forward component (dashed
line), and backward scatter component (dash-dot line)
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where 7(¢) and D are like (2). The OU noise y(#) there-
fore possesses the correlation

D
(y(@0)y($)) = ——exp(=lt = s|/tc) (&)

C

which approaches the case of white noise as correlation
length 7. — O.

2.4 MODEL3: basic dynamical system with extra
delay loop

The degraded effect of underwater images is composed
of absorption and scattering effect. Scattering effect is
more complicated than absorption and can be further
decomposed as backward scattering and forward scat-
tering. Figure 2 shows the typical light propagation sit-
uation in water. Specifically, backward scattering effect
is mainly induced by the ambient underwater environ-
ment, which can be modeled as inherent noise. Forward
component is related to object reflect. Hence, it is much
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Fig. 3 a The effective potential of equation (7) for different ¢ with = = 40. b The effective potential of equation (7) for different delay

lengths T with ¢ = 0.2

more complicated and correlated with the real object
signal. In our model, this effect is simulated as an extra
delay loop that is correlated to the neighbor radiance.
The bistable nonlinear system with extra delay loop
can be described by the following Langevin equation

i=—V (@), x(t =) +r+ 1)+ @), (©6)

V/(x (t), x(t — 7)) is the derivative of the symmetric
double-well potential with a delay component, which
is given by

b 4 a  , c 2
V@), x(t—1)) = 2x(O)" = 5x(0)" = 5x—1)" (7)

where c is the weight of linear delay. Other parameters
have the same meaning as (2). The effective potential
of (7) is plotted in Fig. 3.

3 Main framework of the LSR-based object
detection

Our objectives are to explore the effects of the three
aforementioned LSR systems on the weak object detec-
tion in degraded underwater images and find the rela-
tionship between background noise and LSR system
components. To realize these aims, we first provide
the main workflow of LSR-based object detection. The
three major processing steps are:
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1. Dimensional reduction, which means reducing the
original 2D image to a 1D form signal;

2. Normalization, which means normalizing the orig-
inal signal to [0, 1];

3. Passing the dynamical system. This process will
provide a logical output, where 0 means the back-
ground pixel and 1 means the object pixel, or vice
versa.

The main framework of LSR-based object detection
is shown in Fig. 4.

Figure 5 shows a group of original images cap-
tured in fresh river water from different distances of
the object board to the camera and the corresponding
detection results for different models. The object board
is a picture of a wheel, which is 1.3cm x 1.3cm in
size, with each line width at 1 mm. The camera is a
411000-pixel CCD sensor. The water attenuation and
absorption coefficients, measured by an AC-S meter
(WET-LABS), are 4.5 mland1.3m™!, respectively.
Figure 5 clearly shows that in a long distance range, all
the three models can help to detect the weak object from
the degraded raw images. When the useful information
is completely overwhelmed by the surrounding noise
(distance=30 cm), the output images of the LSR system
do not show a clear shape. In this situation, the result of
LSR system with extra delay loop is much clearer than
the other models. Besides, the width of the detection
result of the OU driven model is wider than that of the
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Fig. 4 The main framework of LSR-based object detection
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Fig. 5 Images of a picture of a wheel in fresh river water from
different distances and the corresponding detection results used
different LSR models. The distance from object board to the cam-
eraisal12.5cm,b 15cm, ¢ 17.5cm,d 20cm, e 22.5cm, f25cm,

other two models. The number of fake detection points
of the extra delay loop model is the lowest.

To obtain the best detection performance, setting
the parameters of the system correctly is necessary.
In practice, three parameters, a, b and r, are available
to modulate the nonlinear basic bistable system. The
ratio of a and b is essentially important. According to
Kramers’ rate [28], the noise-induced hopping between
the local equilibrium states is ﬁ exp (—ATV), and

AV = a?/4b. This means the detection scale is decided
by the ratio of a and b. Meanwhile, the logic function
of the whole system is dependent on r. Therefore, r
should be chosen according to the actual situation of
the object picture. In this study, we first set a = 1.25,

(® (h)

g27.5cm, and h 30 cm, respectively. The parameters of the three
models are set particularly to show the best performance of each
model using the aforementioned method

b = 1, and r = 0.3 empirically to acquire an asym-
metric bistable potential well.

The strength of the additional noise D has a huge
effect on whether or not the system can obtain LSR and
realize the optimum state. It should be set in accordance
with the intensity of the background noise. How the
other parameters of OU noise and delay loop affect
the performance of the whole system will be studied
explicitly below. Besides, the main computation cost of
the LSR-based method lies in the numerical iteration
to solve the differential equation. In this work, we use
four-step Runge—Kutta method.
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4 Experiment results

The probability of obtaining an accurate detection
result is calculated to analyze the performance of LSR
and the effect of parameters D, #., and T on the result
of underwater image detection. As all the models can
obtain almost the same clear results when the distance
from the camera to object board is nearer than 25 cm, in
this paper, we choose the images captured at much fur-
ther distances (distance > 25 cm) as the research object
to perform the explicit experiments. At the same time,
the other group of experiment images using a photo-
graph of resolution lines is added as the object board
to study the resolution power of the three models. To
compare the detection result, the truth value of every
photograph is manually and carefully labeled. To guar-
antee the validity, this step is performed with the help of
ground truth images. The raw images and correspond-
ing truth-value images are shown in Fig. 6.

The correct probability P for each cropped picture
is obtained by comparing the detection results with the
truth-value image. Two auxiliary ratios are calculated.
One is the ratio of object, as

no
Po=—2 (®)

b
Not

where n,, is the number of pixels correctly detected as
the object the result image. ny is the total number of
pixels labeled as object in the truth-value image. The
other one is

ny

Py =—, )
Nt

where nyp is the number of pixels correctly detected
as the background in the result image. ny is the total
number of pixels labeled as background in the truth-
value image.

Then, P is obtained as

P=¢cPy+ (1 —¢€)Pp. (10)

Here, € is the normalization weight to modulate the
degree of importance of P, and P;. In this experiment,
as we mainly aim to detect the object, we set € = 0.8.

Figure 7 shows the changing curves of correct detec-
tion probability P versus the additional noise intensity
D of the six different images shown in Fig. 6. The cor-
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rect detection probability P is calculated by the afore-
mentioned method.

First, we focus separately on the changing trend
of the three models. When the LSR system is driven
with Gaussian noise (red line), the correct probability
first increases and then decreases as the noise intensity
amplifies, except when distance = 30cm, the cor-
rect detection probability P decreases monotonously
with the increasing additional noise intensity. A typical
LSR phenomenon is obtained. The same phenomenon
is also observed when an extra delay loop is added to
the system (green line). The correct detection results of
the LSR system driven with OU noise are more stable
(blue line). A non-monotonous trend is not obtained.
With the amplification of noise intensity, the correct
probability slowly increases, which means that, in this
set of system parameters, a higher OU noise is needed
to obtain high detection probability correctly. Although
the correct probability of the system driven by OU noise
changes monotonously in Fig. 7, if we analyze the func-
tions of P, D, and f. as a whole, a non-monotonous
performance can be observed (Fig. 8).

When the three models are compared, except for
distance = 30cm, the peak points of the three models
occur from left to right as follows: the peak of the sys-
tem driven with Gaussian noise appears first, followed
by the peak of the system with additional delay loop,
and then the peak of system driven by OU noise appears
last. This order means that small extra turbulence power
is needed to obtain the optimal performance when the
system is driven by Gaussian noise; more is needed
when the system has an extra delay loop, and the most
power is needed for the system driven by OU noise.

The sequence of the best detection performance is
as follows: LSR system driven by Gaussian noise is
better than LSR driven by OU noise, and LSR system
driven by OU noise performs better than LSR system
with extra delay loop. However, this order is not always
the case. The curves exhibited in Fig. 7 are obtained
when we seta = 1.25,b = 1,r = 0.3, ¢, = 0.1,
¢ = 0.45,and t = 10. This set of system coefficients is
not the optimal for the different models. Thus, although
the system with extra delay loop looks like it obtained
lower accuracy probability in Fig. 7, it may perform
better in other sets of system parameters. Therefore, the
comparison of best performance of the models in the
figure has no meaning. We only focus on the tendency
of the changing of each model.
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Fig. 6 a Images of a picture of a wheel in fresh river water at river water at different distances and the corresponding manually
different distances and the corresponding manually labeled truth- labeled truth-value images

value images. b Images of a picture of resolution lines in fresh
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Fig. 7 The changing curve of correct detection probability P versus the additional noise intensity D for the three models. Here, the
parameters are setasa = 1.25,b=1,r = 0.3, ¢ = 0.1, c = 0.45, and T = 10.
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Fig. 8 The correct probability P map versus both noise intensity D and correlation length 7. when the system is driven by OU noise.
Here, the corresponding system parameters are set asa = 1.25,b = 1, and r = 0.2

Third, it is clear from Fig. 7 that when the distance
from the object to the camera is 30cm (Fig. 7c), the
useful information is completely attenuated and over-
whelmed by the background noise. Even with the help
of the powerful human brain, the shape in such animage
cannot be identified. For such highly degraded image,
detection probability above 70% is obtained with the
help of a nonlinear system. This means such nonlin-
ear systems work better than human eyes to detect
weak objects in highly degraded underwater images.
An analysis of the changing tendency of P—D of the
three models reveals that the peak of correct probabil-
ity decreases with the increase in noise intensity. The
peak of correct probability is approximately 85% by the
system with extra delay loop. No LSR phenomenon is
observed because the background noise is much higher
than the intensity of the weak signal, which means no
extra turbulence power is needed in such a situation.
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Moreover, a comparison of the performance of the
two original image groups, namely wheel shape and
resolution lines, indicates that the maximum correct
probability of the images of resolution lines is a little
lower than that of the images of the wheel shape, even
for the same distance. This finding is attributed to the
changing interval space among the resolution lines. The
resolution lines are sparse in the upper part and tight
in the bottom part. When the interval space is smaller
than the detection scale of the LSR system, the reso-
lution lines may not be detected separately, but as a
whole. Therefore, the error rate may increase. Deter-
mining how to enhance the detection scale is still an
open question.

As previously mentioned, it is very important to note
that, except for the additional noise intensity D, other
coefficients may affect the final correct detection prob-
ability. Take OU noise as example, where the correla-
tion length #. is also very important. To analyze the
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Fig.9 The correct probability P map versus both noise intensity D and correlation length 7. when the system is added with extra delay
loop. Here, the corresponding system parameters are set as a = 0.85,b = 1,r = — 0.05, and ¢ = 0.45

effect of OU noise on the detection result, we plot
the correct probability map versus both noise inten-
sity D and correlation length 7. as Fig. 8. With the
exception of Fig. 8c, the detection performance clearly
changes non-monotonously with the increase in corre-
lation length, which first increases to the peak point and
then decreases. In addition, when the correlation length
is short (., < 0.2), the detection probability slowly
increases with the increase in the noise intensity, an
outcome that is in accordance with the tendency curve
inFig. 7. When the correlation length is long (t. > 0.2),
increasing the intensity of OU noise will also lead to
the LSR phenomenon.

Meanwhile, we also plot the correct probability map
versus both noise intensity D and delay length 7 for the
system with extra delay loop in Fig. 9. Clearly, when

the system has an extra delay loop, almost 100% cor-
rect detection probability may be obtained in a wide
range of D and t. When the intensity D is smaller than
1.5, the detection probability is slowly decreases with
the increase in the delay length. In such scenario, the
extra delay loop may ruin the performance of the sys-
tem. However, when the intensity D is larger than 1.5,
the detection performance changes non-monotonously
with the increase in delay length, which first increases
to the peak point and then decreases. Specially, Fig. 9¢c
shows that an extra delay loop may help to obtain bet-
ter detection performance when the raw image is highly
degraded. In such situation, an extra delay loop is really
an effective help.
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5 Conclusion

This work proposes a LSR-based weak object detec-
tion method from low-quality underwater images. On
the basis of the physical character of underwater light
propagation, we introduce three LSR models, namely
basic bistable system driven by Gaussian noise, basic
bistable system driven by OU noise, and bistable sys-
tem with extra delay loop, to study the effectiveness of
LSR-based weak object detection. Systematical exper-
iments are performed, and both the correct detection
probability P versus the additional noise intensity D
and other corresponding parameters in the three models
are provided.

It is proved that with the help of LSR, a weak object
can be detected in a wide range of distance. Even when
the original image is difficult for humans to distinguish,
the shape of the weak object can be recognized after
processing by the LSR system. Both OU noise and extra
delay loop will help to maintain good performance in
increased additional noise.

Visually based underwater object detection is along-
standing hard problem. With the help of LSR theory,
underwater exploration may embrace a new develop-
ment. However, this method also has several draw-
backs. For example, the resolution scale of the LSR-
based detection problem is not well handled, a topic
which should be researched further in the future study.
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