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Abstract: Feeble object detection is a long-standing problem in vision based underwater
exploration work. However, because of the complicated light propagation situation and high
background noise, underwater images are highly degraded. Noise is not always detrimental.
Logical stochastic resonance (LSR) can be a useful tool for amplifying feeble signals by utilizing
the constructive interplay of noise and a nonlinear system. In the present study, an appropriate
LSR structure with a delay loop is proposed to process a low-quality underwater image for
enhancing the vision detection accuracy of underwater feeble objects. Ocean experiments are
conducted to demonstrate the e�ectiveness of the proposed structure. We also give explicit
numerical results to illustrate the relationship between the structure of LSR and the correct
detection probability. Methods presented in this paper are quite general and can thus be potentially
extended to other applications for obtaining better performance.
© 2017 Optical Society of America
OCIS codes: (030.4280) Noise in imaging systems; (100.0100) Image processing; (110.0113) Imaging through turbid
media.
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1. Introduction

Due to the absorption and scattering e�ect caused by water molecular and suspended particles,
images acquired underwater su�er from low contrast and significant noise. Processing such
low-quality images by conventional image processing methods is di�cult [1, 2]. Classical image
pre-processing methods, such as denoising and contrast enhancement, seldom obtain good results
over the range of operating conditions often encountered. For the last decades, researchers have
worked hard to enhance the underwater image quality. Many interesting results are obtained, such
as reverse-convolution restoration [3], polarization based enhancement [4], wavelength depended
enhancement [5], and deep learning based enhancement [6]. However, few image enhancement
algorithms work e�ectively in turbid water. Hence, the high-level image processing, including
object detection and recognition, can be di�cult or ine�ective. Detecting feeble objects in turbid
water environment is also too di�cult to be realized using vision based methods under very
turbid water conditions. Thus, it is desirable to investigate particular methods for improving
feeble objects detection in low-quality underwater images.

Noise is not always detrimental and can be a useful component, especially when it is in
nonlinear systems. One of the most famous examples of such phenomena is stochastic resonance
(SR), in which the feeble input information can be amplified and optimized by the help of noise in
the nonlinear system [7]. Murali [8,9] applied SR to help design reconfigurable and reliable logic
gates and introduced the concept of logical stochastic resonance (LSR). As a new idea in nonlinear
dynamics, LSR has attracted immense attention from various areas. The two elements of LSR,
namely, system structure and noise character, have been widely studied by experts [10–12]. LSR
has been applied mainly in tunnelling diodes [13], nanomechanical devices [14] and synthetic
gene networks [15, 16], etc.

By its very nature, detecting feeble objects from low quality underwater images is a question
of feeble signal detection. Linear detection methods can achieve satisfying performance when the
background noise can be modelled as a Gaussian noise. However, nonlinear methods can be more
suitable than linear ones when the underwater situation is significantly complicated [17]. Further,
the aforementioned problem is a logical one. Thus, solving this problem using LSR is reasonable.
In our previous work, we tested the usefulness of LSR in underwater image processing to detect
feeble objects [18]. The results showed that LSR exhibits good performance. However, the
nonlinear system used is not specially designed for the image processing task, and the inherent
noise character of underwater ambient situation is not fully discussed. Thus, we propose an
improved LSR system with an extra delay loop in this paper to increase the detection accuracy.

The paper is organized as follows: In Section 2 we present the theoretical foundations of LSR
based underwater image processing. In Section 3, we show why a delay loop should be considered
and also consider the function of the whole LSR based system. In Section 4, a comparison
between LSR based results of system with delay loop and the one without is performed. Both
subjective and objective analyses are given. Section 5 summarizes the main results of the paper.
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2. LSR based underwater imaging processing

The full underwater light propagation model, described by Duntley in [19] is as follows :

t
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(z, ✓, �) =
t

N0(zt, ✓, �)e(�↵(z)d) + N(z
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t
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d

(z, ✓, �) is the observed radiance. It is a function of the depth of the observer z. ✓ and �
are the zenith and azimuth angles between the observer and the target, respectively. The observed
radiance is a mixture of the radiance at the object,

t

N0(zt, ✓, �), and the radiance in the water
column (the background-light), N(z

t

, ✓, �). In these terms z

t

represents the depth of the target.
The attenuation coe�cient ↵(z), is the sum of two terms, namely, the scattering coe�cient � and
the absorption coe�cient �, both of which are functions of z. The distance between the observer
and the target is denoted by d. The radiance attenuation function, K(z, ✓, �), indicates how the
atmospheric solar light changes with depth.

Theoretically, the knowledge of the inherent properties of water, ↵, �, and � will permit
us to predict the propagation of light in the water and then to restore the high quality image.
However, all these parameters depend on the location d (in a three dimensional space) and
are also time-varying. Therefore, the corresponding measurements are a complex task. A few
simplifications must be conducted to allow the ease of computation. First of all, the water
is assumed to be homogeneous, so K may be considered a unified varieble. The absorption
coe�cient � can be considered as constant over a limited distance, for instance over d. The
scattering e�ect is more complicated versus absorption, and can be further decomposed as
backward scattering and forward scattering. Specifically, forward scattering can be modelled as
a Gaussian filter [1]. Precisely obtaining backward scattering is di�cult. However, researchers
have proved that scattering a�ects the resulting images in a correlated way [3]. In our model, we
simulate this e�ect as an extra delay loop that is correlated with the neighboring radiance.

In this paper, we use two states (i.e. yes or no) to label the detection result. Thus, we choose the
widely used double-well potential as the base system. Furthermore, the backward scattering e�ect
on the captured image is added as an extra delay loop to the base system. The main schematic
of the whole feeble object processing method is shown in Fig. 1. We first sketch a region of
interest (ROI) to narrow down the computing cost, shown as Fig. 1(b). The ROI area should be
dimensionality reduced to a 1D form. There are ways to realize the dimensionality reduction. For
example, expanding the image in the row or column sequence or in the illumination direction.
The 1D signal stream is imported to the nonlinear potential well from the start and followed by a
delay with a modulated weight. Additional noise is also added to stimulate the pixel to jump into
the desired stable state as in the classical stochastic resonance algorithm. With the interplay of
nonlinear system and the additional noise, the detection result will be obtained as the output of
the whole system, such as in Fig. 1(g).

3. LSR with delay loop

The bistable nonlinear system with delay loop can be described by the following Langevin
equation [20]

€x(t) = �V

0(x(t), x(t � ⌧)) + r + I(t) + ⌘(t) (2)

here, V

0(x(t), x(t � ⌧)) is the derivative of the symmetric double-well potential with a delay
component, which is given by

V(x(t), x(t � ⌧)) = b

4
x(t)4 � a

2
x(t)2 � c

2
x(t � ⌧)2 (3)

where a and b are the coe�cients of the linear and non-linear terms, respectively. c is the weight
of linear delay. The bias r has the e�ect of asymmetrizing the two potential wells [18]. Changing r
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Fig. 1. The main schematic flow of proposed method. (a) The raw image with sketched
ROI window(red rectangle). (b) Selected ROI image(containing number 4). (c) Expanded
selected image to 1D form, and processing each pixel of the 1D rows from the beginning
parallelly. The local pixel (blue) and corresponding ⌧ � step delayed pixel (pink) are the
inputs of the nonlinear bistable system. (d) Added gaussian noise. (e) Nonlinear bistable
system, multilayer structure is used to realize parallel computing. (f) The output of nonlinear
bistable system. (g) Final detection output.

can morph the logic operation of the system easily. I(t) represents the input noisy signal. t(t � 0)
is the time or sample index. When I(t) is time-varying signal, t represents the sampling time.
When I represents a serially sampled image signal, t can be considered as the pixel location. ⌧ is
the delay length of the system, and it has the same meaning as t, which means the delay e�ect
is spatially related. ⌘(t) denotes a modulated additional zero-mean Gaussian white noise with
autocorrelation function < ⌘(t)⌘(0) >= 2D�(t), and D is the noise power.

The e�ective potential of Eq. (2) is given by [21]:

V

e f f

(x) = (1 + c⌧)(bx

4

4
� (a + c) x

2

2
) (4)

which has three fixed points: two stable states at x± = ±
p
(a + c)/b and an unstable state x

u

= 0.
The presence of small delay loop changes the shape of the e�ective potential. Increasing the
length of delay ⌧ raises the depth of the potential well, while strong delay loop strength results
in the deep potential well and narrows the distance between the two stable states. The e�ective
potential defined by Eq. (3) is shown in Figs. 2(a) and 2(b). At the same time, in order to illustrate
the e�ect of delay loop on the result of the whole system, an example is plotted as Fig. 2(c). The
first column of Fig. 2(c) is the 1D input signal, which consists of feeble information (red) and
heavy background noise. The later three columns show the response results of the system when
then delay loop ⌧ is di�erent. The system is tuned specifically to obtain OR logic. It is clear that
the logic output of the system without delay loop (⌧ = 0) is incorrect in the 11th time period, as
highlighted in red, and the outcome is wrong in the 2nd, 5th, 11th time periods when the delay
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length is ⌧ = 40, in Fig. 2(c), while all the output is correct when ⌧ = 10. In this example, the
presence of a moderate delay loop (⌧ = 10) enhances the accuracy robustness of the system.
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Fig. 2. (a)The e�ective potential of Eq. (3) for di�erent c with ⌧ = 40. (b)The e�ective
potential of Eq. (3) for di�erent time delay with c = 0.2. Other parameters of the system
are set as a = 0.8, b = 1, r = 0, and the noise power D = 0 for both plots. (c)The input and
output of the LSR system with delay loop. From top to bottom, panel 1 shows the input I(t),
panel 2-4 show the responses of the system with ⌧ set to be 0, 10, and 40, respectively. Other
parameters of the system are set as a = 1.25, b = 1, c = 0.2, r = 0.3, and the noise power
D = 0.5.

In practice, there are three parameters, a, b and r to modulate the nonlinear bistable system.
Moreover, the weight of delay loop c and delay length ⌧ should be tuned according to the actual
imaging and water condition. At the same time, whether the system can obtain LSR and realize
the optimum state or not, the power of the additional noise D strongly a�ects the resultant output.
In this paper, we first set a = 1.25, b = 1 and r = 0.3 empirically to get an asymmetric bistable
potential well [Fig. 1(f)]. As formulated in Eq. (4) the range of delay loop weight c should be
from 0 to a. The delay length is a coe�cient in accordance with the water quality, and will
increase with the increasing distance from object to camera. As another preparatory work, to
make the algorithm adaptive, we normalize the dimensionally reduced 1D signal to range [0
1] and compute the variance. The additional noise power is originally added as the computed
variance, and may be modulated later to get better overall performance. LSR theory points out
that the system may perform the best over a narrow range of noise power. However, what is the
optimum noise power is not given by the theory. So we need to tune the noise intensity manually,
or with the help of optimization methods.

The di�erential equation of Eq. (2) is numerically solved by a four step Rugger-Kutta algorithm.
Our computing platform is MacBook Pro with 2.5Ghz Intel Core i7 processor. The simulation
software is MATLAB 2013B.

                                                                                          Vol. 25, No. 19 | 18 Sep 2017 | OPTICS EXPRESS 22494 



4. Experiment results

4.1. Subjective analyses

Figure 3 shows three groups of badly degraded images (the first column) captured in o�shore
seawater and the corresponding detection results obtained by our method. For clear illustration,
we list the results of the numbers respectively next to each raw image. The images on the upper
row of each group are the results of LSR without delay loop and the ones on the bottom row are
the results with delay loop. Without loss of generality, the size of the images is modulated to be
same.

a

b

c

Fig. 3. Badly degraded images captured in o�shore seawater (left column) and the corre-
sponding detection results obtained by our method. The images (rightmost) on the upper
row of each group are the results of LSR without delay loop and the ones on the bottom
row are the results with delay loop. (a) Image at distance d = 1m from camera to test object
with artificial illumination. (b) Image at distance d = 1m from camera to test object with
natural illumination. (c) Image at distance d = 1.3m from camera to test object with artificial
illumination. The parameters of the system are set as a = 0.85, b = 1, c = 0.45, r = �0.05,
and the noise power D = 0.3. ⌧ is set to be 3, 5, and 7 from up to bottom.

The raw images clearly show a blue-green tone, which is characteristic of the scattering
character of seawater. The images are low quality because of the high degree of scattering noise
producing low contrast and poor underwater visibility, which is a common scenario in o�shore
area or river water. Such highly degraded images are the object of our study. Our study mainly
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aims to detect the shape of the characters on the object calibration board correctly without any
pre-processing procedure.

Among the three raw images shown in Fig. 3, the image in Fig. 3(a) is relatively clear. This
indicates that the signal to noise ratio (SNR) of this image is higher than that of the other two.
Thus, we first use it in examining the e�ect of the extra delay loop. Obviously, the use of LSR
can help to separate the feeble object from the background without any pre-processing procedure.
The detection result is good regardless of whether an extra delay loop is applied. Notably, the
flaws on the both groups of results in Fig. 3(a) are di�erent. In the system without delay loop, the
resulting images are clear. However, some parts of the numbers are not detected correctly. For
example, the left-top parts of number 2 and 3 are lost. Moreover, the calibration lines, which
constitute the shape of T following the number 3, are completely undetected. Compared with
the upper images, the bottom show much better detection result. Specifically, the edge of the
numbers is more accurate in the bottom images. The left-top parts of number 2 and 3 are also
detected correctly. Furthermore, the calibration lines behind number 3 are detected too.

The flaws on the results of LSR can be removed easily by simple image processing method,
such as medium filter. However, we do not conduct such processing in order to highlight the
capability of LSR.

The raw images in Figs. 3(b) and 3(c) are very faint because of the backward scattering and
light absorption. In Fig. 3(b), several numbers can be observed in the raw image. However, the
edge of the numbers cannot be distinguished. Little useful information can be obtained from
the original image in Fig. 3(c) visually. Popular image enhancement and restoration algorithms,
such as dark channel [22] and Fattel’s [23] method, can induce slight enhancement e�ect in such
images. The useful information has already been overwhelmed by the heavy noise.

The detection result in Fig. 3(b) indicates that, in such low-quality image, LSR still can be
applied to obtain a relatively satisfactory result regardless of whether delay loop is applied.
However, the resulting images with delay loop exhibit improved detection correction than those
without delay loop. The noise in the upper processed images is greater than that in the bottom
images. The raw image in Fig. 3(c) is completely blurred. The detection result is poor even with
the help of LSR. Although the separation result is obtained without delay loop, the information
from the resulting image cannot be identified. Extra flaws in the form of spatial noise exist in the
images. However, the number can be recognized easily, which is an important enhancement. A
much better result is obtained when delay loop is added to the LSR system.

On the basis of analyzing the above three groups of images, we conclude that LSR can help
detect feeble objects from low-quality images. The extra delay loop provides the model with high
precision and better detection result, especially when the background noise is large.

4.2. Objective analyses

To analyze the performance of LSR with delay loop in underwater image processing throughly,
we also calculate the probability P of getting a correct detection result. In this paper, we give the
explicit performance about the third raw picture in Fig. 3(c) as the example. Since there are many
impurities floating in water which also enter the scope of image, it is hard to judge whether it is
right or wrong to detect such things. So we first manually crop the part only contain the number
character from the original image. To be specific, we crop number 1, 2, 3, and 4 area separately.
And then carefully label the truth-value in every cropped picture (To guarantee the validity, this
step is carried out with the help of a ground-truth image of the calibration board ).

The correct probability P for each cropped picture is obtained by comparing the detection
result of LSR with delay loop with the truth-value image. Two auxiliary ratios are calculated.
One is the object detection probability ratio, as

P

o

=
n

o

n

ot

, (5)
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Fig. 4. Four groups of the cropped original image, the labeled truth-value image, probability
of correct detection versus added noise power P � D curve and the colormap of probability
of correct detection versus added noise power and delay length P � D&⌧. Here, P � D curve
is obtained by setting ⌧ = 10. Other parameters of the system are set as: a = 0.85, b = 1,
c = 0.4, r = �0.05. The four original images are cropped from the same original picture
[Fig. 3(c)].
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where n

o

is the number of pixels, which are correctly detected as the object pixels, in the result
image. n

ot

is the total number of pixels labeled as object pixel in the truth-value image. The other
one is the background detection probability ratio, as

P

b

=
n

b

n

bt

(6)

where n

b

is the number of pixels, which are correctly detected as the background pixels, in the
result image. n

bt

is the total number of pixels labeled as background pixel in the truth-value
image.

Then, P is obtained as
P = ✏P

o

+ (1 � ✏)P
b

. (7)

Here, ✏ is the normalization coe�cient to modulate the degree of importance of P

o

and P

b

. In
this experiment, as we aim to detect the correct number character, we set a nominal value ✏ = 0.8.

Based on the above method, we can study the interplay of noise power D and delay loop ⌧
with the correct probability P. Figure 4 shows four groups of the cropped original image, the
labeled truth-value image, probability of correct detection versus added noise power P � D curve
and the colormap of probability of correct detection versus added noise power and delay length
P � D&⌧.

Figure 4 clearly illustrates several phenomena. Firstly, when the delay loop ⌧ is fixed, the correct
probability P will change non-monotonically, first increase and then decrease, as the intensity of
additional noise becomes larger. This is the typical performance of LSR. Secondly, shown as the
P � D&⌧ colormap, for each particular noise intensity, a moderate additional delay loop will
increase the correct probability of detection, which validates the e�ectiveness of the LSR with
delay loop method in underwater image processing. Thirdly, the system parameters to obtain an
optimal detection result for each number are not same, and the maximum correct probability is
also not consistent. So, to obtain optimal detection result, a local-correlated parameter setting is
recommended, which means that a set of di�erent system parameters may be needed in di�erent
local patches.

5. Conclusion

In summary, we propose a LSR with delay loop system to detect feeble objects from low-quality
underwater images. The addition of an extra delay loop provides the system with high precision
in processing underwater images. Ocean experiments illustrate the enhancement e�ect of delay
loop on the feeble object detection. Explicit numerical results about the performance of LSR
based feeble object detection are shown to illustrate the relationship between the correct detection
probability with the coe�cients of the system. Typical LSR phenomenon is obtained.

However, although the proposed method may detect feeble objects in very low SNR, it does have
some drawbacks. Foremost, the method in this version can only be used in simple background,
including the illumination condition. When the background is complicated, correct detection of
feeble objects may be very hard or impossible. Often in highly turbid water, the background is
highly uniform at source-object separation of multiple attenuation lengths 1/↵(z) where lighting
non-uniformity due to surface wave refraction phenomena, or artificial lighting defects are less
prominent. So this method may prove to be useful for exploration activities in highly turbid
conditions.
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