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Logical stochastic resonance (LSR), the phenomenon in
which the interplay of noise and nonlinearity can raise
the accurate probability of response to feeble input signals,
is studied in this Lettter to extract objects from highly de-
graded underwater images. Images captured under water,
especially in the turbid areas, always suffer from interfer-
ence through heavy noise caused by the suspended particles.
Inherent noise and nonlinearity cause difficulty in process-
ing these images through conventional image processing
methods. However, LSR can optimally address such issues.
A heavily degraded image is first extended to a 1D form in
the direction determined by the illumination condition,
and then normalized to be placed in the LSR system as
an input signal. Additional Gaussian noise is added to
the system as the auxiliary power to help separate the object
and the background. Results in the natural offshore area
demonstrate the effect of LSR on image processing, and
the proposed method creates an interesting direction in
the processing of heavily degraded images. © 2016
Optical Society of America
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In recent years, underwater vision has received increasing
attention because of abundant marine resources and the high
research value of oceans. However, the fundamental limits im-
posed by the underwater environment, such as absorption and
scattering of light by particles in the water, constrain the quality
of underwater imaging [1]. Moreover, underwater images show
large temporal and spatial variations [2]. These problems cause
difficulty in building an accurate physical model [3] and in
processing underwater images through the conventional image
processing methods.

Two main inherent characteristics of turbid media imaging
are nonlinearity and heavy noise. However, the noise is not al-
ways detrimental. Stochastic resonance (SR) [4] is the typical
theory of noise being useful. With the interplay of nonlinearity
and noise, SR is particularly helpful in processing a feeble signal
which is overwhelmed by heavy noise [5,6]. Furthermore,

recently in the field of image processing, the application of
SR in denoising, image enhancement, and edge detection
has been reported [7–11]. Although the aforementioned studies
have obtained a good effect, the SR concept is only used as a
supplement to the conventional image processing methods,
such as histogram analysis and Fourier transformation.

On the basis of SR, the concept of logical stochastic reso-
nance (LSR), which extended the SR concept to s logical system
[12,13], is proposed. The typical phenomenon of LSR is that
the response of a bistable system to two feeble inputs can obtain
a logical output with accuracy controlled by noise intensity, and
the logical function can be easily tuned by modulating the
system parameters. As we know, the ultimate aim of object de-
tection is to detect and extract an object from the background,
which is a logical judgment procedure. Thus, using LSR to
process heavily degraded images captured under turbid media
may be helpful.

In this Letter, as we only aim at object detection and extrac-
tion from the heavily noisy background, only two logical states
(0 and 1) are needed. We consider logic 0 as the background
and logic 1 as the object. Given only two states, we choose the
popular quartic-bistable dynamical system as the base nonlinear
system, which is governed by (1):

U �x� � b
4
x4 −

a
2
x2 − rx; (1)

whereU �x� represents the bistable potential system. a and b are
the coefficients of linear and nonlinear terms, respectively.
When the bias r is zero, the system (1) has two stable states
at x� � �

ffiffiffiffiffiffiffi
a∕b

p
and a potential barrier with ΔV � a2∕4b

at 0. r has the effect of asymmetrizing the two potential wells
to achieve different output logic. Figure 1 shows the potential
well of system (1) with a different bias r. We can observe that
by changing the bias r, the bistable states become asymmetric,
and the potential barrier is changed. When the potential well is
symmetric, and the barrier is not high, particles jump arbitrarily
between the two wells under the effect of additional power
offered by the noise. However, if the potential well is not sym-
metric, according to Langevin dynamics, particles in such a
system have a greater likelihood of jumping into and staying
in the low-potential well. Thus, by tuning the potential well,
we can detect a feeble signal by helping the corresponding
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pixels jump to the right potential well and manage the output
logic according to specific applications at the same time.

When the system is driven by a feeble signal together with
heavy noise, the Langevin function of (1) can be written as

_x � _U �x� � I�t� � Dη�t�; (2)

with the nonlinear system U �x� given by Eq. (1); η�t� denotes
Gaussian white noise with zero mean and delta correlation, and
D is the noise intensity. I�t� is the low-amplitude input signal.
t�t ≥ 0� is the index of the sampling. When I�t� is a time-
varying signal; t can represent the sampling time. When I
represents an image signal, t can be considered as the pixel
coordinates.

The framework of the LSR-based object extraction of a
highly degraded image is shown in Fig. 2. The pipeline has
two main streams. One is the input-output stream. We set
the heavily degraded image as the input signal. Additional
noise, the density of which is decided by the inherent noise
of the image, is added at the same time to the nonlinear system.
The additional noise is used to counter the inherent noise. The
output end of the system is the labeled result, which can
directly indicate whether a pixel belongs to the object or the
background. The other stream of the pipeline takes the role
of parameter modulating. To make the system adaptive, the
major feature of the given image is calculated and used as
the adaption algorithm input. In this Letter, noise intensity
and illumination direction are considered to decide the system
parameters: a, b, and r.

The general format of the input in traditional LSR is 1D.
However, an image is universally 2D. Thus, before using LSR
to deal with the image information, we have to reduce the
dimension first. Imaging through turbid water suffers interfer-
ence not only through the noise caused by suspended particles,
but also through non-uniformed illumination. Because of the
highly nonuniformed illumination, the overall image intensity
changes in the direction of the illumination. Based on this ob-
servation, the image can be extended to 1D in the direction
perpendicular to the illumination direction. Moreover, the
underwater imaging can be classified as natural and artificial
lighting. Regardless of the type of illumination, the illumina-
tion direction can be estimated by an illumination direction
estimation algorithm. In this Letter, the main procedure of
illumination estimation involves finding the point with the
highest intensity, and then calculating the changing direction.
Once the illumination direction is obtained, the image can be
processed.

When the zenith angle is larger than 45°, for example,
during crepuscular time, the illumination is dominated by hori-
zontal changes. We can extend the image to 1D through the
column and consider the row information as auxiliary at the
same time. When the zenith angle is considerably small, such
as at noon, the image is dominated by the vertical illumination
changes, andwe can extend the imagemainly by array and, at the
same time, consider the column information. When the illumi-
nation ismultidirectional, such as using artificial lighting, we can
also extend the image in the perpendicular direction combined
with anisotropic filter, which is used to smooth the captured
image to estimate the illumination direction more accurately.
Then, the intensity of every pixel has to be normalized to [0, 1].

In our experiments, we mainly use the image captured in
Jiaozhou Bay in northeast China. The camera used in our ex-
periment is a 411,000-pixel CCD sensor (UWC-300, Outland
Technology). The camera and the illumination system are
installed on a tow sled. The artificial illumination is powered
with a 150 W halogen bulb. The underwater visibility is an
important characteristic of water quality and, at the same time,
a crucial parameter which will determine the final quality of
underwater imaging. The classical method of measuring water
quality is by the Secchi disk method [14]. In our experiment,
the Secchi depth is measured as 1.7 m. The Secchi depth is a
very intuitive instruction, but not very precise. Thus, we also
use the AC-Smeter(WET-LABS) to measure water attenuation
and absorption coefficients. The corresponding measured co-
efficients are 3.9 m−1 and 0.95 m−1, respectively. According
to statistics, the typical attenuation coefficients for deep ocean
water, coastal water, and bay water are 0.05 m−1, 0.2 m−1, and
0.33 m−1, respectively, and the transparent quality decreases
successively. Therefore, the experimental data on water quality
show that the test water area is more turbid than the areas con-
sidered in most studies on underwater image processing.

When the underwater visibility is preferable, the major
problems in underwater images are low contrast and color dis-
tortion. Correspondingly, the color correction and contrast
enhancement algorithm, such as white balance and histogram
equalization, can be used to produce a visually pleasing image.
However, when the attenuation coefficient of the water area is
large, the underwater images not only suffer from the above
problems, but also from the high noise, which makes the image
almost unacceptable and difficult to deal with.

Fig. 1. Potential well of system (1) to the different bias r.

Fig. 2. Main framework of the LSR-based object extraction of a
highly degraded image.
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A group of heavily degraded images captured in our experi-
ments and the corresponding results processed by two different
methods, which are state-of-the-art algorithms, are presented in
Fig. 3. The images in the first row of Fig. 3 are the original
images, which are the imaging of the calibration board from
different conditions. Numbers 1, 2, 3, and 4 and some calibra-
tion tails are printed on the calibration board. The entire board
is approximately 60 cm × 40 cm, and each number is about
10 cm × 5 cm. The distance from the camera to the object
is 1, 1, and 1.2 m. The illumination type is natural light in
Fig. 3(a) and artificial light in Figs. 3(b) and 3(c), respectively.
The raw pictures clearly show a blue–green tone that coincides
with the scattering feature of seawater. Since the water visibility
is poor, the pictures have a low quality characterized by a high-
intensity noise and a low contrast. Such highly degraded images
are the object of this Letter. Our goal is to correctly detect the
shape of the characters on the calibration board without any
pre-processing procedure.

As indicated in Fig. 3, popular processing methods may
slightly enhance the visibility, but the enhancement is feeble.
Detecting clear information from these images by traditional
image segmentation method is still difficult, since the pre-
processing images also have poor quality.

In the three raw pictures shown in Fig. 3, Fig. 3(b) is rel-
atively simple to process than the other images. Thus, we use
this image to show the capacity of LSR in underwater image
processing first. The focus of the illumination in Fig. 3(b) is
almost at the center of the image and, under the effect of this,
numbers 1 and 3 are much clearer than numbers 2 and 4. In the
conventional image processing method, the morphological
method is always used to subtract the effect of a nonuniformed
background. However, in Fig. 3(b), the background and the
object are already blended together because of the high-
intensity noise. Thus, filtering the effect of the nonuniformed
light under the influence of heavy noise with the morphological
method is very difficult. However, we can resort to LSR to solve
this problem effectively. The aforementioned bistable potential
well is used as the base system, and the parameters are set to be
a � 1.25, b � 0.5, r � 0.4. Gaussian white noise is also addi-
tionally. Figure 4 is the result obtained by the proposed method

when additional noise intensity is 0.4. As this figure shows, our
approach can detect the object perfectly.

In Fig. 3(a), the numbers on the object plate are fuzzier than
those with additional artificial light. We can only recognize
that there are several numbers in the pictures. However, the
contour detail is very vague, especially in numbers 2 and 4.
Furthermore, the picture is also affected by the nonuniform
illumination; even the illumination is not very clear to human
vision. The image is lighter at the right-top, and much darker at
the bottom. If we use the classical threshold method to process
this image, the illumination effect will be dominated. To nar-
row down the computing range and obtain a convenient
explanation, we first manually sketched the regions that seem
to have a number, such as the red boxes in Fig. 5(a). The pixel-
wise intensity color map and corresponding LSR processed
result of each ROI region are shown in Figs. 5(b)–5(i).
Carefully observing the color map, we find that the object in-
formation is almost drowned by the noise. The highly degraded
image is used as the input of the potential well, which is
supported by the additional noise, and the nonlinear system

Fig. 4. Image of Fig. 3(b) processed by our method.

Fig. 3. Heavily degraded underwater images enhancement test by
state-of-the-art algorithm. (a)–(c) Raw image captured in Jiaozhou
Bay in 3 m depth. (d)–(f ) Results of a dark channel algorithm
[15]. (g)–(i) Results of the Tarel algorithm [16].

Fig. 5. (a) Sketched ROI, (b)–(e) a density color map of each num-
ber, and (f )–(i) the labeled result of each number.
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can help to separate the feeble signal from the high-intensity
noise. Thus, the correctly labeled result is presented in the out-
put end.

Furthermore, to testify the effect of LSR, we change the
noise intensity to observe the result. Without a loss of general-
ity, number 2 is taken as an example. When the additional noise
is zero, we do not add any noise, but only place the cropped
image as the input signal to the potential well. The output
image cannot show the number 2 figure correctly [Fig. 6(b)].
However, as the noise intensity is raised, a much clearer shape
of the number shows up. For example, when the noise intensity
is about 0.5, the number can be separated from the background
easily, as shown in Fig. 6(d). If we continually raise the noise
intensity, the noise on the output image begins to increase.
When the noise intensity is more than 1, the useful information
is drowned by the noise in the output end again, as shown in
Fig. 6(f ). Figure 7 indicates that the correct probability changes
nonmonotonically as the noise intensity increases. The proba-
bility first increases to almost 1 and then decreases versus noise
intensity, which is the typical character of SR.

We have shown the ability of the LSR-based method in ob-
ject detection from heavily degraded underwater images. At
last, we will test the limit of the proposed method by Fig. 3(c).
As we see, Fig. 3(c) is too blurry, and useful information is
hardly visible in this picture. However, if we process this picture
with our algorithm, we obtain the result as Fig. 8. The picture
clearly contains four numbers, and we can easily recognize 1, 2,
and 3 in this processed image. Number 4 is the most unclear
number, because the right bottom corner of the image is over-
whelmed by noise. Although the shapes of the numbers are not

very clear, obviously, the signal-to-noise (SNR) ratio increases
significantly after LSR processing.

In summary, we introduce the concept of LSR to deal with
extremely noisy images captured under water. An image is
extended to 1D signal in directions perpendicularly to the light
direction. Experimental results show that the proposed method
can help to raise the SNR ratio and effectively extract the num-
ber shape from the background. However, this new LSR-based
method also presents certain problems, foremost of which is
that it can only label the image through logical conditions.
Furthermore, the LSR concept cannot solve the problem when
the object is already completely drowned by noise. Despite
these limitations, the LSR-based method proposed in this
Letter presents a new direction to process highly degraded
images captured under water.
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Fig. 6. (a) Raw image and (b)–(f ) labeled result with different noise
intensity.

Fig. 7. Correct probability curve of the extraction result versus the
noise intensity.

Fig. 8. Processed result of Fig. 3(c) by our method.
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