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Fuzzy Sets: OutlineFuzzy Sets: Outline

Introduction

Basic definitions and terminology

Set-theoretic operations

MF formulation and parameterization

• MFs of one and two dimensions

• Derivatives of parameterized MFs

More on fuzzy union, intersection, and complement

• Fuzzy complement

• Fuzzy intersection and union

• Parameterized T-norm and T-conorm
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A Case for Fuzzy LogicA Case for Fuzzy Logic

“So far as the laws of mathematics refer to 
reality, they are not certain. And so far as they 
are certain, they do not refer to reality.”

- Albert Einstein
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Probability versus FuzzinessProbability versus Fuzziness

I am thinking of a random shape (circle, square, or 
triangle). What is the probability that I am thinking 
of a circle?

Which statement is more 

accurate?

• It is probably a circle.

• It is a fuzzy circle.
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Two similar but different situations:

• There is a 50% chance that there 
is an apple in the fridge.

• There is half of an apple in the 
fridge.

Probability versus FuzzinessProbability versus Fuzziness
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ParadoxesParadoxes

A heterological word is one that does not 
describe itself. For example, “long” is 
heterological, and “monosyllabic” is 
heterological.

Is “heterological” heterological?
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ParadoxesParadoxes

Bertrand Russell’s barber paradox (1901)

The barber shaves a man if and only if he does 
not shave himself. Who shaves the barber? … 

S: The barber shaves himself

Use t(S) to denote the truth of S

S implies not-S, and not-S implies S

Therefore, t(S) = t(not-S) = 1 – t(S)

t(S) = 0.5

Similarly, “heterological” is 50% heterological
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ParadoxesParadoxes

Sorites paradox:

Premise 1: One million grains of sand is a heap

Premise 2: A heap minus one grain is a heap

Question: Is one grain of sand a heap?

Number of grains

“H
e
a
p
-n
e
s
s
”

0

100%
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Fuzzy SetsFuzzy Sets

Sets with fuzzy boundaries

A = Set of tall people

Heights5’10’’

1.0

Crisp set A

Membership
function

Heights5’10’’ 6’2’’

.5

.9

Fuzzy set A

1.0
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Membership Functions (MFs)Membership Functions (MFs)

Characteristics of MFs:

• Subjective measures

• Not probability functions

M
em
b
er
sh
ip

Height5’10’’

.5

.8

.1

“tall” in Asia

“tall” in the US

“tall” in NBA



Neuro-Fuzzy and Soft Computing: Fuzzy Sets

11

Fuzzy SetsFuzzy Sets

Formal definition:

A fuzzy set A in X is expressed as a set of ordered 
pairs:

A x x x XA {( , ( ))| }

Universe or

universe of discourse
Fuzzy set

Membership

function

(MF)

A fuzzy set is totally characterized by a

membership function (MF).
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Fuzzy Sets with Discrete UniversesFuzzy Sets with Discrete Universes

Fuzzy set C = “desirable city to live in”

X = {SF, Boston, LA} (discrete and nonordered)

C = {(SF, 0.9), (Boston, 0.8), (LA, 0.6)}

Fuzzy set A = “sensible number of children”

X = {0, 1, 2, 3, 4, 5, 6} (discrete universe)

A = {(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)}
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Fuzzy Sets with Cont. UniversesFuzzy Sets with Cont. Universes

Fuzzy set B = “about 50 years old”

X = Set of positive real numbers (continuous)

B = {(x, B(x)) | x in X}

 B x
x

( ) 












1

1
50

10

2
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Alternative NotationAlternative Notation

A fuzzy set A can be alternatively denoted as 
follows:

A x xA

x X

i i

i




 ( ) /

A x xA

X

   ( ) /

X is discrete

X is continuous

Note that S and integral signs stand for the union of 

membership grades; “/” stands for a marker and does 

not imply division.
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Fuzzy PartitionFuzzy Partition

Fuzzy partitions formed by the linguistic values 
“young”, “middle aged”, and “old”:

lingmf.m
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More DefinitionsMore Definitions

Support

Core

Normality

Crossover points

Fuzzy singleton

a-cut, strong a-cut

Convexity

Fuzzy numbers

Bandwidth

Symmetricity

Open left or right, closed
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MF TerminologyMF Terminology

MF

X

.5

1

0
Core

Crossover points

Support

a - cut

a

These expressions are all defined in terms of x.
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Convexity of Fuzzy SetsConvexity of Fuzzy Sets

A fuzzy set A is convex  if for any l in [0, 1],

 l l  A A Ax x x x( ( ) ) min( ( ), ( ))1 2 1 21  

A is convex if all its a-cuts are convex. (How 
do you measure the convexity of an a-cut?)

convexmf.m



Neuro-Fuzzy and Soft Computing: Fuzzy Sets

19

Set-Theoretic OperationsSet-Theoretic Operations

Subset:

Complement:

Union:

Intersection:

 for all A BA B x   

C A B x x x x xc A B A B         ( ) max( ( ), ( )) ( ) ( )

C A B x x x x xc A B A B         ( ) min( ( ), ( )) ( ) ( )

A X A x x
A A     ( ) ( )1
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Set-Theoretic OperationsSet-Theoretic Operations

subset.m

fuzsetop.m
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MF FormulationMF Formulation

Triangular MF: trimf ( ; , , ) max min , ,0
x a c x

x a b c
b a c b

   
   

   

Trapezoidal MF: trapmf ( ; , , , ) max min ,1, ,0
x a d x

x a b c d
b a d c

   
   

   

Generalized bell MF: 2

1
gbellmf ( ; , , )

1

b
x a b c

x c

a






Gaussian MF:

2
1

2gaussmf ( ; , )

x c

x c e 
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MF FormulationMF Formulation

disp_mf.m
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MF FormulationMF Formulation

Sigmoidal MF:
( )

1
sigmf ( ; , )

1 a x c
x a c

e 




Extensions:

Abs. difference 
of two sig. MF

(open right MFs)

Product

of two sig. MFs

disp_sig.m

c = crossover point

a controls the 

slope, and right/left
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MF FormulationMF Formulation

L-R 
(left-right) 
MF:

,

LR( ; , , )

,

L

R

c x
F x c

a
x c a b

x c
F x c

b

  
 

  
 

     

Example: F x xL ( ) max( , ) 0 1 2 F x xR ( ) exp( ) 
3

difflr.m

c=65

a=60

b=10

c=25

a=10

b=40
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Cylindrical ExtensionCylindrical Extension

Base set A Cylindrical Ext. of A

cyl_ext.m
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2D MF Projection2D MF Projection

Two-dimensional

MF

Projection

onto X

Projection

onto Y

R x y( , ) 



A

y
R

x

x y

( )

max ( , )

 



B

x
R

y

x y

( )

max ( , )



project.m

0

0.5

1

X

(a) A Two-dimensional MF

Y

0

0.5

1

X

(b) Projection onto X

Y

0

0.5

1

X

(c) Projection onto Y

Y
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2D Membership Functions2D Membership Functions

2dmf.m
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Fuzzy Complement N(a) : [0,1][0,1]Fuzzy Complement N(a) : [0,1][0,1]

General requirements of fuzzy complement:

• Boundary: N(0)=1 and N(1) = 0

• Monotonicity: N(a) > N(b) if a < b

• Involution: N(N(a)) = a

Two types of fuzzy complements:

• Sugeno’s complement (Michio Sugeno):

• Yager’s complement (Ron Yager, Iona College):

N a
a

sa
s( ) 





1

1

N a aw

w w( ) ( ) / 1 1
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Fuzzy ComplementFuzzy Complement

negation.m

N a
a

sa
s( ) 





1

1
N a aw

w w( ) ( ) / 1 1

Sugeno’s complement: Yager’s complement:
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Fuzzy Intersection: T-normFuzzy Intersection: T-norm

Analogous to AND, and INTERSECTION

Basic requirements:

• Boundary: T(0, 0) = 0, T(a, 1) = T(1, a) = a

• Monotonicity: T(a, b)  T(c, d) if a  c and b  d

• Commutativity: T(a, b) = T(b, a)

• Associativity: T(a, T(b, c)) = T(T(a, b), c)

Four examples (page 37):

• Minimum: Tm(a, b)

• Algebraic product: Ta(a, b)

• Bounded product: Tb(a, b)

• Drastic product: Td(a, b)
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T-norm OperatorT-norm Operator

Minimum:

Tm(a, b)

Algebraic

product:

Ta(a, b)

Bounded

product:

Tb(a, b)

Drastic

product:

Td(a, b)

tnorm.m
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Fuzzy Union: T-conorm or S-normFuzzy Union: T-conorm or S-norm

Analogous to OR, and UNION

Basic requirements:

• Boundary: S(1, 1) = 1, S(a, 0) = S(0, a) = a

• Monotonicity: S(a, b)  S(c, d) if a  c and b  d

• Commutativity: S(a, b) = S(b, a)

• Associativity: S(a, S(b, c)) = S(S(a, b), c)

Four examples (page 38):

• Maximum: Sm(a, b)

• Algebraic sum: Sa(a, b)

• Bounded sum: Sb(a, b)

• Drastic sum: Sd(a, b)
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T-conorm or S-normT-conorm or S-norm

tconorm.m

Maximum:

Sm(a, b)

Algebraic

sum:

Sa(a, b)

Bounded

sum:

Sb(a, b)

Drastic

sum:

Sd(a, b)
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Generalized DeMorgan’s LawGeneralized DeMorgan’s Law

T-norms and T-conorms are duals which 
support the generalization of DeMorgan’s law:

• T(a, b) = N(S(N(a), N(b))): a and b = not(not a, or not b)

• S(a, b) = N(T(N(a), N(b))): a or b = not(not a, and not b)

Tm(a, b)

Ta(a, b)

Tb(a, b)

Td(a, b)

Sm(a, b)

Sa(a, b)

Sb(a, b)

Sd(a, b)
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Parameterized T-norm and S-normParameterized T-norm and S-norm

Parameterized T-norms and dual T-conorms 
have been proposed by several researchers:

• Yager

• Schweizer and Sklar

• Dubois and Prade

• Hamacher

• Frank

• Sugeno

• Dombi


