

	Soft Computing: Fuzzy Rules and Fuzzy Reasoning
	Outline
	Extension principle
	Fuzzy relations
	Fuzzy IF-THEN rules
	Compositional rule of inference
	Fuzzy reasoning
3	

	Soft Computing: Fuzzy Rules and Fuzzy Reasoning
	Extension Principle
	Extends crisp domains of mathematical expressions to fuzzy domains
	A is a fuzzy set on X :
	$A = \mu_A(x_1) / x_1 + \mu_A(x_2) / x_2 + \dots + \mu_A(x_n) / x_n$
	The image of A under $f()$ is a fuzzy set B:, i.e., $B=f(A)$
	$B = \mu_B(x_1) / y_1 + \mu_B(x_2) / y_2 + \dots + \mu_B(x_n) / y_n$
	where $y_i = f(x_i)$, $i = 1$ to n .
	If <i>f(</i>) is a many-to-one mapping, then
4	$\mu_B(y) = \max_{x=f^{-1}(y)} \mu_A(x)$

	Soft Computing: Fuzzy Rules and Fuzzy Reasoning
	Fuzzy Reasoning: Single Antecedent
	Let A, A', and B be fuzzy sets of X, X, and Y, respectively.
	Assumption: the fuzzy implication A->B is expressed as a fuzzy relation R on XxY
	The fuzzy set B induced by
	fact: x is A' and
	premise: IF x is A then y is B
	$\mu_{R'}(y) = \max_{y} \min \left[\mu_{A'}(x), \mu_{R'}(x, y) \right]$
	$= \bigvee_{x} \left[\mu_{A} \cdot (x) \land \mu_{B} \left(x, y \right) \right]$
31	or: $B' = A' \circ R = A' \circ (A \rightarrow B)$

	Soft Computing: Fuzzy Rules and Fuzzy Reasoning
	Outline
	Extension principle
	Fuzzy relations
	Fuzzy IF-THEN rules
	Compositional rule of inference
	Fuzzy reasoning
3	

	Soft Computing: Fuzzy Rules and Fuzzy Reasoning
	Extension Principle
	Extends crisp domains of mathematical expressions to fuzzy domains
	A is a fuzzy set on X :
	$A = \mu_A(x_1) / x_1 + \mu_A(x_2) / x_2 + \dots + \mu_A(x_n) / x_n$
	The image of A under $f()$ is a fuzzy set B:, i.e., $B=f(A)$
	$B = \mu_B(x_1) / y_1 + \mu_B(x_2) / y_2 + \dots + \mu_B(x_n) / y_n$
	where $y_i = f(x_i)$, $i = 1$ to n .
	If <i>f(</i>) is a many-to-one mapping, then
4	$\mu_B(y) = \max_{x=f^{-1}(y)} \mu_A(x)$

	Soft Computing: Fuzzy Rules and Fuzzy Reasoning
	Fuzzy Reasoning: Single Antecedent
	Let A, A', and B be fuzzy sets of X, X, and Y, respectively.
	Assumption: the fuzzy implication A->B is expressed as a fuzzy relation R on XxY
	The fuzzy set B induced by
	fact: x is A' and
	premise: IF x is A then y is B
	$\mu_{R'}(y) = \max_{y} \min \left[\mu_{A'}(x), \mu_{R'}(x, y) \right]$
	$= \bigvee_{x} \left[\mu_{A} \cdot (x) \land \mu_{B} \left(x, y \right) \right]$
31	or: $B' = A' \circ R = A' \circ (A \rightarrow B)$

