Jang, Sun, and Mizutani Neuro-Fuzzy and Soft Computing Chapter 6 Derivative-Based Optimization

Outline

- 1. Gradient Descent
- 2. The Newton-Raphson Method
- 3. The Levenberg–Marquardt Algorithm
- 4. Trust Region Methods

Contour plot

Gradient descent: head downhill http://en.wikipedia.org/wiki/Gradient_descent Fuzzy controller optimization: Find the MF parameters that minimize tracking error min $E(\theta)$ with respect to θ

 θ = *n*-element vector of MF parameters $E(\theta)$ = controller tracking error

$$
\theta_{k+1} = \theta_k - \eta \frac{\partial E}{\partial \theta_k}
$$
\n
$$
\frac{\partial E}{\partial \theta_k} = \left[\frac{\partial E}{\partial \theta_{1k}} \cdots \right]_{\text{v}_{nk}}^{\text{T}} - \left[\frac{\partial E}{\partial \theta} \right]_{\theta = \theta_k}
$$
\n
$$
\eta = \text{step size}
$$
\n
$$
k = \text{step number}
$$

Contour plot of x ²+10*y* 2

 η too small: convergence takes long time

 η too large: overshoot minimum

x=-3: 0.1: 3; y=-2: 0.1: 2; for i=1:length(x), for j=1:length(y), $z(i,j)=x(i)^2+10*y(j)^2$; end, end contour(x,y,z)

Gradient descent is a *local* optimization method (Rastrigin function)

$$
\theta_{k+1} = \theta_k - \eta_k \frac{\partial E}{\partial \theta_k}
$$

How should we select the step size?

- \bullet η_k too small: convergence takes long time
- n_k too large: overshoot minimum

Line minimization:

 η_k = arg min θ_{k+1} $=$ arg min σ_{k+1}

Recall the general Taylor series expansion: $f(x) = f(x_0) + f'(x_0)(x - x_0) + ...$ Therefore, 2 1 $\frac{(\theta_{k+1})}{2\Omega} \approx \frac{\partial E(\theta_k)}{2\Omega} + \frac{\partial^2 E(\theta_k)}{2\Omega^2} (\theta_{k+1} - \theta_k)$ $k+1$, \mathcal{L} \mathcal{L} $k+1$ \mathcal{V}_k $k \longrightarrow k \longrightarrow k$ $E(\theta_{i,j})$ $\partial E(\theta_i)$ $\partial^2 E(\theta_i)$ $\theta_{\rm tot}$ $-\theta_{\rm s}$ θ_{ι} $\partial \theta_{\iota}$ $\partial \theta_{\iota}$ ┿ ┿ $\partial E(\theta_{i,j})$ $\partial E(\theta_i)$ ∂ $\approx \rightarrow$ \rightarrow $+$ \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow $\partial \theta$, $\partial \theta$, ∂

The minimum of $E(\theta_{k+1})$ occurs when its derivative is 0, which means that:

$$
\frac{\partial E(\theta_k)}{\partial \theta_k} + \frac{\partial^2 E(\theta_k)}{\partial \theta_k^2} (\theta_{k+1} - \theta_k) = 0
$$

$$
(\theta_{k+1} - \theta_k) = -\left[\frac{\partial^2 E(\theta_k)}{\partial \theta_k^2}\right]^{-1} \frac{\partial E(\theta_k)}{\partial \theta_k}
$$

Compare the two equations:

$$
\theta_{k+1} = \theta_k - \eta_k \frac{\partial E}{\partial \theta_k}
$$

$$
(\theta_{k+1} - \theta_k) = -\left[\frac{\partial^2 E(\theta_k)}{\partial \theta_k^2}\right]^{-1} \frac{\partial E(\theta_k)}{\partial \theta_k}
$$
 We see that
$$
\eta_k = \left[\frac{\partial^2 E(\theta_k)}{\partial \theta_k^2}\right]^{-1}
$$

Newton's method, also called the Newton-Raphson method

Jang, Fig. 6.3 – The Newton-Raphson method approximates $E(\theta)$ as a quadratic function

$$
\theta_{k+1} = \theta_k - \eta_k \frac{\partial E}{\partial \theta_k}
$$

$$
\eta_k = \left[\frac{\partial^2 E(\theta_k)}{\partial \theta_k^2} \right]^{-1}
$$

The Newton-Raphson method

The second derivative is called the *Hessian* (Otto Hesse, 1800s)

How easy or difficult is it to calculate the Hessian? What if the Hessian is not invertible?

The Levenberg–Marquardt algorithm:

$$
\theta_{k+1} = \theta_k - \left[\frac{\partial^2 E(\theta_k)}{\partial \theta_k^2} + \lambda I \right]^{-1} \frac{\partial E}{\partial \theta_k}
$$

 λ is a parameter selected to balance between steepest descent ($\lambda = \infty$) and Newton-Raphson $(\lambda = 0)$. We can also control the step size with another parameter η :

$$
\theta_{k+1} = \theta_k - \eta \left[\frac{\partial^2 E(\theta_k)}{\partial \theta_k^2} + \lambda I \right]^{-1} \frac{\partial E}{\partial \theta_k}
$$

Jang, Fig. 6.5 – Illustration of Levenberg-Marquardt gradient descent

Trust region methods: These are used in conjuction with the Newton-Raphson method, which approximates E as quadratic in θ :

$$
E(\theta_k + \Delta \theta_k) \approx E(\theta_k) + \left(\frac{\partial E}{\partial \theta_k}\right)^T \Delta \theta_k + \frac{1}{2} \Delta \theta_k^T \left(\frac{\partial^2 E}{\partial \theta_k^2}\right) \Delta \theta_k
$$

If we use Newton-Raphson to minimize *E* with a step size of $\Delta\theta_k$, then we are implicitly assuming that $E(\theta_k + \Delta \theta_k)$ will be equal to the above expression.

 $E(\theta_{k+1})$ = actual value after Newton-Raphson step $=$

 L_{k+1} ˆ $E(\theta_{k+1})$ = predicted value after Newton-Raphson step Ξ

Actually, we expect the actual improvement ν_k to be slightly smaller than the true improvement:

$$
V_k = \frac{E(\theta_k) - E(\theta_{k+1})}{E(\theta_k) - \hat{E}(\theta_{k+1})}
$$

We limit the step size $\Delta\theta_k$ so that $|\Delta\theta_k|$ <R_k Our "trust" in the quadratic approximation is proportional to V_k

 v_k = ratio of actual to expected improvement

 R_k = trust region: maximum allowable size of $\Delta \theta_k$

$$
R_{k+1} = \begin{cases} R_k / 2 & \text{if } \nu_k < 0.2\\ 2R_k & \text{if } \nu_k > 0.8\\ R_k & \text{otherwise} \end{cases}
$$