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Chapter 6
Derivative-Based Optimization
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Contour plot

Gradient descent: head downhill
http://en.wikipedia.org/wiki/Gradient_descent



Fuzzy controller optimization: Find the MF
parameters that minimize tracking error

min E(O) with respect to 0
0 = n-element vector of MF parameters
E(O) = controller tracking error
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17 = step size

k = step number
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x=-3:0.1: 3; y=-2: 0.1: 2;

for i=1:length(x), for j=1:length(y), z(i,j)=x(i)*2+10*y(j)*2; end, end

contour(x,y,z)

Contour plot of
x%+10y?

1 too small:
convergence
takes long time

n too large:
overshoot
minimum



Glabal minimum at [00]

Gradient descent is a local optimization method
(Rastrigin function)



Step Size Selection
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How should we select the step size?
* 717, too small: convergence takes long time
* 77, too large: overshoot minimum
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Step Size Selection

Recall the general Taylor series expansion:

flx) =f(xy) + f'(x5)(x —x,) +...  Therefore,
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The minimum of E(§,,,) occurs when its
derivative is O, which means that:
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Step Size Selection

Compare the two equations:
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We see that 7, = (2")}
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Newton’s method, also called
the Newton-Raphson method
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Jang, Fig. 6.3 — The Newton-Raphson method
approximates E(&) as a quadratic function
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Step Size Selection

OE
0,.,=6,—-n — The Newton-Raphson method

00,

| O’E(6,) " The second derivative is called the
g 00; Hessian (Otto Hesse, 1800s)

How easy or difficult is it to
calculate the Hessian?

What if the Hessian is not
invertible?
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Step Size Selection

The Levenberg—Marquardt algorithm:
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A is a parameter selected to balance between
steepest descent (A = o) and Newton-Raphson
(A =0). We can also control the step size with
another parameter n:

2 -1
0*E(6,) +’U} OE

007 00,

Hk+1:€k_77|: PY:
k



Descent
Direction

Jang, Fig. 6.5 — lllustration of Levenberg-Marquardt
gradient descent

Steepest Contour
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Step Size Selection

Trust region methods: These are used in
conjuction with the Newton-Raphson method,
which approximates E as quadratic in 0
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If we use Newton-Raphson to minimize E with a
step size of Ag,, then we are implicitly assuming
that E(0 +A6,) will be equal to the above

expression.



Step Size Selection

E(6,,,) = actual value after Newton-Raphson step
E (6,.,) = predicted value after Newton-Raphson step

Actually, we expect the actual improvement v, to
be slightly smaller than the true improvement:
_ E(‘gk)_E(gkﬂ)
E(ek)_E(gkﬂ)
We limit the step size Ag, so that |AG,|<R,

Our “trust” in the quadratic approximation is
proportional to v,

Vi



Step Size Selection

v, = ratio of actual to expected improvement
R, = trust region: maximum allowable size of A,

R, /2 ifv, <02
R, =4 2R 1 v, >0.8

R,  otherwise
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