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Chapter 6
Derivative-Based Optimization
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Outline

1. Gradient Descent

2. The Newton-Raphson Method

3. The Levenberg–Marquardt Algorithm

4. Trust Region Methods
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Gradient descent: head downhill

http://en.wikipedia.org/wiki/Gradient_descent

Contour plot
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Fuzzy controller optimization: Find the MF 
parameters that minimize tracking error

min E() with respect to 

 = n-element vector of MF parameters

E() = controller tracking error
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x=-3: 0.1: 3; y=-2: 0.1: 2;

for i=1:length(x), for j=1:length(y), z(i,j)=x(i)^2+10*y(j)^2; end, end

contour(x,y,z)
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Contour plot of 
x2+10y2

 too small: 
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takes long time

 too large: 
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minimum
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Gradient descent is a local optimization method 
(Rastrigin function)
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How should we select the step size? 

• k too small: convergence takes long time

• k too large: overshoot minimum

Line minimization:
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Step Size Selection
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Recall the general Taylor series expansion:

f(x) = f(x0) + f’(x0)(x – x0) + … Therefore,

Step Size Selection
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The minimum of E(k+1) occurs when its 
derivative is 0, which means that:
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Compare the two equations:
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Step Size Selection

We see that
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Newton’s method, also called 
the Newton-Raphson method
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Jang, Fig. 6.3 – The Newton-Raphson method 
approximates E( ) as a quadratic function
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The second derivative is called the 
Hessian (Otto Hesse, 1800s)
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Step Size Selection

How easy or difficult is it to 
calculate the Hessian?

What if the Hessian is not 
invertible?

The Newton-Raphson method
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The Levenberg–Marquardt algorithm:

Step Size Selection
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 is a parameter selected to balance between 
steepest descent ( = ) and Newton-Raphson 
( = 0). We can also control the step size with 
another parameter :
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Jang, Fig. 6.5 – Illustration of Levenberg-Marquardt 
gradient descent
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Trust region methods: These are used in 
conjuction with the Newton-Raphson method, 
which approximates E as quadratic in  :

Step Size Selection
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If we use Newton-Raphson to minimize E with a 
step size of k, then we are implicitly assuming 
that E(k+k) will be equal to the above 
expression.
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Actually, we expect the actual improvement k to 
be slightly smaller than the true improvement:
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Step Size Selection
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We limit the step size k so that |k|<Rk

Our “trust” in the quadratic approximation is 
proportional to  k
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k = ratio of actual to expected improvement

Rk = trust region: maximum allowable size of k

Step Size Selection
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