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Introduction
Human brain is superior to digital computer at 
many tasks

+ e.g., processing of visual information

+ robust and fault tolerant (nerve cells in the bra in 
die every day)

+ flexible; adjusts to new environment

+ can deal with information that is sparse, 
imprecise, noisy, inconsistent

+ highly parallel

+ small, compact, dissipates very little power

- slower in primarily (simple) arithmetic operations
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Neurons

McCulloch & Pitts (1943)

- simple model of neuron as a binary threshold 
unit

- uses step function to “fire” when threshold µµµµ
is surpassed x1

x2

x3

w1

w2

w3 µ
Σ
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Real Neurons

Real Neurons

- use not even approximately threshold devices

- it is assumed they use a non-linear 
summation method

- produce a sequence of pulses (not a single 
output level)

- do not have the same fixed delay (t-> t+1)

- are not updated synchronously

- amount of transmitter substance varies 
unpredictably
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Issues

What does that leave us with?

What is the best architecture? 

(layers, connections, activation 
functions, updating, # units?)

How can it be programmed?

(can it learn, # examples needed, time to 
learn, amount of supervision, real-time 
learning)

What can it do?

(how many tasks, how well, how fast, 
how robust, level of generalization)
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Neural Nets: Categorization
Supervised Learning

• Multilayer perceptrons
• Radial basis function networks
• Modular neural networks
• LVQ (learning vector quantization)

Reinforcement Learning
• Temporal Difference Learning
• Q-Learning

Unsupervised Learning
• Competitive learning networks
• Kohonen self-organizing networks
• ART (adaptive resonant theory)
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Supervised Neural Networks

Requirement:

known input-output relations

input pattern output
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Hopfield Model

Associative Memory is considered the “fruit 
fly” of this field.

It illustrates in the simplest possible manner 
the way that collective computation can work.

Store a set of patterns in such a way that when 
presented with a new pattern, the network 
responds by producing the closest stored 
pattern.

Conventional approach:

store a list of patterns, compute the Hamming 
distance, find the smallest, et voila!
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Hopfield Network Operation

Picture is pattern; stored as attractor in the 
configuration space. 

From arbitrary starting points, one attractor will 
be found
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Hopfield Network Operation

Picture is pattern; stored as attractor in the 
configuration space. 

From arbitrary starting points, one attractor will 
be found

Soft Computing: Neural Networks

12

Hopfield Architecture
- Recurrent Network

- Symmetric Architecture

- Evaluation until no more changes are observed

i.e., network settles into local minimum config.

- local minimum corresponds to “energy function” 

wij

1 2 3 4

E w x xij i j
i j

= − �
1
2 ,
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Hopfield Network Equations

The operative equation, i.e., the network output 
at each step is

where

y w xi ij j
i

=
�

�
�

�

�
��sgn

( )sgn x =
≥
<

�
	



1   if x 0

-1 if x 0
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Learning in Hopfield Models

Learning Rule:

( ) ( )w w x x

w
ij

n
ij

n
i j

ii

+ = +
=

1

0
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Hopfield Example
Learn x=[1 1 -1 -1]

which gives us the weight matrix

w=[0     1    -1    -1

1     0    -1    -1

-1    -1     0     1

-1    -1     1     0]

Now let’s check the slightly corrupted pattern

p=[1 1 -1 1]

which will restore the pattern found close

y=[1 1 -1 -1]

with an energy level of E=-6

wij

1 2 3 4

w14=-1
w13=-1

w12=-1 w34=-1

w23=-1
w24=-1
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Hopfield Example
Learn second pattern x=[-1 -1 1 1]
which gives us the new weight matrix
w=[0     2    -2    -2

2     0    -2    -2
-2    -2     0     2
-2    -2     2     0]

Now let’s check the slightly corrupted pattern
p=[-1 -1 -1 1]
which will restore the pattern
y=[-1 -1 1 1]
with an energy level of E=-12
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More Complex Hopfield Examples

Reconstruction of Images

binary images are 130x180 pixels
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Hopfield Book Example
Character Recognition

eight exemplar patterns

output pattern for noisy “3” input
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Hopfield: Issues

- Other memories can get lost

- Memories are created that were not supposed 
to be there

- crosstalk: if there are many memories, they 
might interfere

- no emphasis on learning; rather handcrafting 
to get desired properties

- goes towards optimization

Soft Computing: Neural Networks

20

Perceptrons
-Rosenblatt: 1950s

-Input patterns represented is binary

-Single layer network can be trained easily

-Output o is computed by

where

w i is a (modifiable) weight

x i is the input signal

θθθθ is some threshold (weight of constant input)
f(.) is the activation function 

o f w xi i
i

n

= −
�

�
�

�

�
�

=
� θ

1

f x x( ) sgn( )= =
�
	



1

0

 if x > 0

 otherwise
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Single-Layer Perceptrons

Network architecture

x1

x2

x3

w1

w2

w3

w0

y = signum(Σwi xi + w0)
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Single-Layer Perceptron

Example: Gender classification (according to Jang)

h

v

w1

w2

w0

Network Arch.

y = signum(hw1+vw2+w0)

-1 if female
1 if male=

y

Training data

h (hair length)

v 
(v

oi
ce

 fr
eq

.)
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Perceptron

Learning:

select an input vector

if the response is incorrect, modify all weights

where

t i is a target output

ηηηη is the learning rate

If a set of weights for converged state exists, the n a 
method for tuning towards convergence exists

(Rosenblatt, 1962)

∆w t xi i i= η 
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ADALINE

single layer network (conceived by Widrow and Hoff)

output is weighted linear combination of weights

error is described as

(for pattern p)

where

tp is the target output

op is the actual output

o w x wi i
i

n

= −
=
� 0

1

( )E t op p p= −
2
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ADALINE

To decrease the error, the derivative wrt the 
weights is taken

The delta rule is:

Intuitive appeal:

if t p>op, boost o p by increasing w ix i

increase w i if x i is positive

decrease w i is x i is negative

( )∆ p i p p iw t o x= −η

( )∂
∂
E

w
t o x

p

i
p p i= − −2
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ADALINE and MADALINE

+ Simplicity of learning procedure

+ Distributed learning; can be performed 
locally at node level

+ on-line (pattern by pattern) learning

+ connect several ADALINEs to MADALINEs to 
deal with XOR problem

+ were used for noise cancellation, adaptive 
inverse control

- only one layer; no suitable training method 
for multi-layer perceptron … why?
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XOR

Minsky and Papert reported a severe shortcoming 
of single layer perceptrons, the XOR problem…

not linearly separable

x1 x2 output
0 0 0
0 1 1
1 0 1
1 1 0

x

xO

O1

10
0
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XOR

Minsky and Papert reported a severe shortcoming 
of single layer perceptrons, the XOR problem…

not linearly separable

x1 x2 output
0 0 0
0 1 1
1 0 1
1 1 0

x

xO

O1

10
0

021021

01021

02021

0021

011

001
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0000
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Enter the Dark Ages of NNs

…which (together with a lack or proper training 
techniques for multi-layer perceptrons) all but 
killed interest in neural nets in the 70s and 
early 80s.
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Multilayer Perceptrons

Two-layer perceptron

x2

+1

+1

1.5

-1

0.5

+1

+1 0.5
+1

x1

x4

x3

x5
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Two-Layer Perceptron: XOR

Node output as surface of their two inputs

note location of “o” and “x”

x2

+1

+1

1.5

-1

0.5

+1

+1 0.5
+1

x1

x4

x3

x5
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Multilayer Perceptrons (MLPs)

Learning rule:
• Steepest descent (Backprop)
• Conjugate gradient method
• All optim. methods using first derivative
• Derivative-free optim.

Network architecture

x1

x2

y1

y2

hyperbolic tangent
or logistic function
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Multi-Layer Perceptrons
-Recall the output

-and the squared error measure

which is amended to

-and the activation function

or or

then the learning rule for each node can be derived  
using the chain rule...

o f w xi i
i

n

= −
�

�
�

�

�
�

=
� θ

1

( )E t op p p= −
2 ( )p

k
p

k
p

k
k

n

E t o= −
=
�

2

1

( )f x
e x=

+ −

1

1
( )f x

e
e

xx

x=
−
+

= �
�
�

�
�
�

−

−
1
1 2

tanh ( )f x x=
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Multi-Layer Perceptrons
-Recall the output

-and the squared error measure

which is amended to

-and the activation function

or or

squashing

functions

o f w xi i
i

n

= −
�

�
�

�

�
�

=
� θ

1

( )E t op p p= −
2 ( )p

k
p

k
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k
k
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�
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Backpropagation

make incremental change in the direction
dE/dw to decrease the error.

The learning rule for each node can be derived 
using the chain rule...

…to propagate the error back through a multi-
layer perceptron. ∂

∂
E

parameters

er
ro

r

∆w
E

wki

p

kip

= − �η
∂
∂
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Back-prop procedure

1. Initialize weights to small random values

2. Choose a pattern and apply it to input layer

3. Propagate the signal forward through the 
network

4. Compute the deltas for the output layer

5. Compute the deltas for the preceding layers 
by propagating the error backwards

6. Update all weights

7. Go back to step 2 and repeat for next pattern

8. Repeat until error rate is acceptable
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Step 1

1. Initialize weights to small random values

Example:

0.3w12
2

-0.6w11
2

-0.1w22
1

-0.1w21
1

-0.3w12
1

-0.4w11
1

ValueWeight

 

x 2 

w11 2 x 1 
O 1 

O 
1 

w12 2 
w22 1 

w11 1 

w21 1 

w12 1 

3 
2 

O 
2 
2 

= O 
1 
1 

= O 
2 
1 

-0.1t1
3

0.5t2
2

0.2t1
2

ValueThreshold
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Step 2

2. Choose a pattern and apply it to input layer

011
101
110
000

Target outputx1x1
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Step 3

Propagate signal forward through the network

until all outputs have been calculated

For m=0 (input layer), the output is the pattern.

Example:

�
�

�

�

�
�

�

�
= � −

j

mm
ij

m
i j

OwgO 1

 

x 2 

x 1 
O = 1/(1+exp(-2*β*(0*(-0.4)+1*(-0.3)+0.2)) 1 w11

1=-0.4 
w21

1=-0.3 

2 
= O = 0 

1 
1 

= O = 1 
2 
1 

t1
2=0.2 
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Step 4

Compute the deltas for the output layer

by comparing the actual output O 

with the target output t 

for the pattern p considered

Example:

( )[ ]m
i

p
i

M
i

M
i Odhg −= 'δ

 

x 2 

x 1 O =0.1321 
1 
3 = O 

1 
1 

= O 
2 
1 

t1

2=-0.1 

h1

2=0.2745 

( ) ( )m
i

p
i

m
i

m
i Odhf −⋅= 'δ
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Step 5

Compute the deltas for the preceding layers by 
propagating the errors backwards

for m=M, M-1, M-2, …

until a delta has been calculated for every unit

( )�−− =
n

j

m
j

m
ij

m
i

m
i whg δδ 11 '



9/29/2003

22

Page 22

Soft Computing: Neural Networks

43

Step 6

Use

to update all connections to 

1−=∆ m
j

m
i

m
ij Ow ηδ

ij
old
ij

new
ij www ∆+=
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Step Size, Initial Weights

Step size:

too big

too small

variable:

compute error

backpropagate

compute error again

if error bigger, reduce step size (0.5)

otherwise, increase a little (1.1)

Initial weights: randomize (= 0)

er
ro

r
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Momentum

If error minimum in long narrow valley,

then updating can happen to zig-zag down the 
valley

smoothes weight updating

can speed learning up ∆ ∆w E ww prev= − ∇ +η α
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Overfitting
Error on learning cases

Error on validation cases

trained things that are accidental and unimportant

epoch

er
ro

r

epoch

er
ro

r
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Local Minima

There is no guarantee that the algorithm 
converges to a global minimum

- check with different initial conditions 
(different weights, etc.)

- perturb the system (data) with noise to 
improve result

epoch

er
ro

r
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Architectures and other Techniques

Normalize weights

move weights same Euclidean distance

each epoch

Data scaling

Input scaling: allows weights to have

same order of magnitude

Output scaling: let target go between +- 0.9

to avoid saturation

What number of nodes per layer?

How many layers?
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MLP Decision Boundaries

A B

B A

A

B

XOR Interwined General

1-layer: Half planes

A B

B A

A

B

2-layer: Convex

A B

B A

A

B

3-layer: Arbitrary
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Radial Basis Function (RBF) Networks

Each node is described by a bell shaped function

where

c i is the center of the curve

Network architecture

x1

x2

y1

y2

Σ

Σ

o
x c

i
i

i

= −
−�

�

�
�

�

�

�
�exp

2

22σ
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RBF

Output:

weighted sum

weighted average

linear combination

Location of Center:

Use (fuzzy) k-means clustering

Size of Variance:

Use knn-classifier and take average distance
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XOR, revisited

x y output
0 0 0
0 1 1
1 0 1
1 1 0



9/29/2003

27

Page 27

Soft Computing: Neural Networks

53

RBF and FIS

Consider the radial basis functions:

and a linear combination of the output variables 

then the response is equivalent to ...

x

1.0

c1 c2 c3

y a o bi i i= +� �
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Modular Networks

Task decomposition

Local Experts

Fuse information

local expert 1
O1

weigh experts 
opinions by gi

Input x
...

ylocal expert 2

local expert n

O2

On

fuse
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last slide


