
9/29/2003

1

Page 1

Soft Computing: Neural Networks

1

Neural Networks
(Chapter 9)

Kai Goebel, Bill Cheetham

GE Corporate Research & Development
goebel@cs.rpi.edu

cheetham@cs.rpi.edu

Soft Computing: Neural Networks

2

Outline

Introduction

Categories

Hopfield Net

Perceptron

Single Layer

Multi Layer

9/29/2003

2

Page 2

Soft Computing: Neural Networks

3

Introduction
Human brain is superior to digital computer at
many tasks

+ e.g., processing of visual information

+ robust and fault tolerant (nerve cells in the bra in
die every day)

+ flexible; adjusts to new environment

+ can deal with information that is sparse,
imprecise, noisy, inconsistent

+ highly parallel

+ small, compact, dissipates very little power

- slower in primarily (simple) arithmetic operations

Soft Computing: Neural Networks

4

Neurons

McCulloch & Pitts (1943)

- simple model of neuron as a binary threshold
unit

- uses step function to “fire” when threshold µµµµ
is surpassed x1

x2

x3

w1

w2

w3 µ
Σ

9/29/2003

3

Page 3

Soft Computing: Neural Networks

5

Real Neurons

Real Neurons

- use not even approximately threshold devices

- it is assumed they use a non-linear
summation method

- produce a sequence of pulses (not a single
output level)

- do not have the same fixed delay (t-> t+1)

- are not updated synchronously

- amount of transmitter substance varies
unpredictably

Soft Computing: Neural Networks

6

Issues

What does that leave us with?

What is the best architecture?

(layers, connections, activation
functions, updating, # units?)

How can it be programmed?

(can it learn, # examples needed, time to
learn, amount of supervision, real-time
learning)

What can it do?

(how many tasks, how well, how fast,
how robust, level of generalization)

9/29/2003

4

Page 4

Soft Computing: Neural Networks

7

Neural Nets: Categorization
Supervised Learning

• Multilayer perceptrons
• Radial basis function networks
• Modular neural networks
• LVQ (learning vector quantization)

Reinforcement Learning
• Temporal Difference Learning
• Q-Learning

Unsupervised Learning
• Competitive learning networks
• Kohonen self-organizing networks
• ART (adaptive resonant theory)

Soft Computing: Neural Networks

8

Supervised Neural Networks

Requirement:

known input-output relations

input pattern output

9/29/2003

5

Page 5

Soft Computing: Neural Networks

9

Hopfield Model

Associative Memory is considered the “fruit
fly” of this field.

It illustrates in the simplest possible manner
the way that collective computation can work.

Store a set of patterns in such a way that when
presented with a new pattern, the network
responds by producing the closest stored
pattern.

Conventional approach:

store a list of patterns, compute the Hamming
distance, find the smallest, et voila!

Soft Computing: Neural Networks

10

Hopfield Network Operation

Picture is pattern; stored as attractor in the
configuration space.

From arbitrary starting points, one attractor will
be found

9/29/2003

6

Page 6

Soft Computing: Neural Networks

11

Hopfield Network Operation

Picture is pattern; stored as attractor in the
configuration space.

From arbitrary starting points, one attractor will
be found

Soft Computing: Neural Networks

12

Hopfield Architecture
- Recurrent Network

- Symmetric Architecture

- Evaluation until no more changes are observed

i.e., network settles into local minimum config.

- local minimum corresponds to “energy function”

wij

1 2 3 4

E w x xij i j
i j

= − �
1
2 ,

9/29/2003

7

Page 7

Soft Computing: Neural Networks

13

Hopfield Network Equations

The operative equation, i.e., the network output
at each step is

where

y w xi ij j
i

=
�

�
�

�

�
��sgn

()sgn x =
≥
<

�
	

1 if x 0

-1 if x 0

Soft Computing: Neural Networks

14

Learning in Hopfield Models

Learning Rule:

() ()w w x x

w
ij

n
ij

n
i j

ii

+ = +
=

1

0

9/29/2003

8

Page 8

Soft Computing: Neural Networks

15

Hopfield Example
Learn x=[1 1 -1 -1]

which gives us the weight matrix

w=[0 1 -1 -1

1 0 -1 -1

-1 -1 0 1

-1 -1 1 0]

Now let’s check the slightly corrupted pattern

p=[1 1 -1 1]

which will restore the pattern found close

y=[1 1 -1 -1]

with an energy level of E=-6

wij

1 2 3 4

w14=-1
w13=-1

w12=-1 w34=-1

w23=-1
w24=-1

Soft Computing: Neural Networks

16

Hopfield Example
Learn second pattern x=[-1 -1 1 1]
which gives us the new weight matrix
w=[0 2 -2 -2

2 0 -2 -2
-2 -2 0 2
-2 -2 2 0]

Now let’s check the slightly corrupted pattern
p=[-1 -1 -1 1]
which will restore the pattern
y=[-1 -1 1 1]
with an energy level of E=-12

9/29/2003

9

Page 9

Soft Computing: Neural Networks

17

More Complex Hopfield Examples

Reconstruction of Images

binary images are 130x180 pixels

Soft Computing: Neural Networks

18

Hopfield Book Example
Character Recognition

eight exemplar patterns

output pattern for noisy “3” input

9/29/2003

10

Page 10

Soft Computing: Neural Networks

19

Hopfield: Issues

- Other memories can get lost

- Memories are created that were not supposed
to be there

- crosstalk: if there are many memories, they
might interfere

- no emphasis on learning; rather handcrafting
to get desired properties

- goes towards optimization

Soft Computing: Neural Networks

20

Perceptrons
-Rosenblatt: 1950s

-Input patterns represented is binary

-Single layer network can be trained easily

-Output o is computed by

where

w i is a (modifiable) weight

x i is the input signal

θθθθ is some threshold (weight of constant input)
f(.) is the activation function

o f w xi i
i

n

= −
�

�
�

�

�
�

=
� θ

1

f x x() sgn()= =
�
	

1

0

 if x > 0

 otherwise

9/29/2003

11

Page 11

Soft Computing: Neural Networks

21

Single-Layer Perceptrons

Network architecture

x1

x2

x3

w1

w2

w3

w0

y = signum(Σwi xi + w0)

Soft Computing: Neural Networks

22

Single-Layer Perceptron

Example: Gender classification (according to Jang)

h

v

w1

w2

w0

Network Arch.

y = signum(hw1+vw2+w0)

-1 if female
1 if male=

y

Training data

h (hair length)

v
(v

oi
ce

 fr
eq

.)

9/29/2003

12

Page 12

Soft Computing: Neural Networks

23

Perceptron

Learning:

select an input vector

if the response is incorrect, modify all weights

where

t i is a target output

ηηηη is the learning rate

If a set of weights for converged state exists, the n a
method for tuning towards convergence exists

(Rosenblatt, 1962)

∆w t xi i i= η

Soft Computing: Neural Networks

24

ADALINE

single layer network (conceived by Widrow and Hoff)

output is weighted linear combination of weights

error is described as

(for pattern p)

where

tp is the target output

op is the actual output

o w x wi i
i

n

= −
=
� 0

1

()E t op p p= −
2

9/29/2003

13

Page 13

Soft Computing: Neural Networks

25

ADALINE

To decrease the error, the derivative wrt the
weights is taken

The delta rule is:

Intuitive appeal:

if t p>op, boost o p by increasing w ix i

increase w i if x i is positive

decrease w i is x i is negative

()∆ p i p p iw t o x= −η

()∂
∂
E

w
t o x

p

i
p p i= − −2

Soft Computing: Neural Networks

26

ADALINE and MADALINE

+ Simplicity of learning procedure

+ Distributed learning; can be performed
locally at node level

+ on-line (pattern by pattern) learning

+ connect several ADALINEs to MADALINEs to
deal with XOR problem

+ were used for noise cancellation, adaptive
inverse control

- only one layer; no suitable training method
for multi-layer perceptron … why?

9/29/2003

14

Page 14

Soft Computing: Neural Networks

27

XOR

Minsky and Papert reported a severe shortcoming
of single layer perceptrons, the XOR problem…

not linearly separable

x1 x2 output
0 0 0
0 1 1
1 0 1
1 1 0

x

xO

O1

10
0

Soft Computing: Neural Networks

28

XOR

Minsky and Papert reported a severe shortcoming
of single layer perceptrons, the XOR problem…

not linearly separable

x1 x2 output
0 0 0
0 1 1
1 0 1
1 1 0

x

xO

O1

10
0

021021

01021

02021

0021

011

001

010

0000

wwwwww

wwwww

wwwww

wwww

−≤+⇔≤++
−>⇔>++
−>⇔>++

≤⇔≤++

9/29/2003

15

Page 15

Soft Computing: Neural Networks

29

Enter the Dark Ages of NNs

…which (together with a lack or proper training
techniques for multi-layer perceptrons) all but
killed interest in neural nets in the 70s and
early 80s.

Soft Computing: Neural Networks

30

9/29/2003

16

Page 16

Soft Computing: Neural Networks

31

Multilayer Perceptrons

Two-layer perceptron

x2

+1

+1

1.5

-1

0.5

+1

+1 0.5
+1

x1

x4

x3

x5

Soft Computing: Neural Networks

32

Two-Layer Perceptron: XOR

Node output as surface of their two inputs

note location of “o” and “x”

x2

+1

+1

1.5

-1

0.5

+1

+1 0.5
+1

x1

x4

x3

x5

9/29/2003

17

Page 17

Soft Computing: Neural Networks

33

Multilayer Perceptrons (MLPs)

Learning rule:
• Steepest descent (Backprop)
• Conjugate gradient method
• All optim. methods using first derivative
• Derivative-free optim.

Network architecture

x1

x2

y1

y2

hyperbolic tangent
or logistic function

Soft Computing: Neural Networks

34

Multi-Layer Perceptrons
-Recall the output

-and the squared error measure

which is amended to

-and the activation function

or or

then the learning rule for each node can be derived
using the chain rule...

o f w xi i
i

n

= −
�

�
�

�

�
�

=
� θ

1

()E t op p p= −
2 ()p

k
p

k
p

k
k

n

E t o= −
=
�

2

1

()f x
e x=

+ −

1

1
()f x

e
e

xx

x=
−
+

= �
�
�

�
�
�

−

−
1
1 2

tanh ()f x x=

9/29/2003

18

Page 18

Soft Computing: Neural Networks

35

Multi-Layer Perceptrons
-Recall the output

-and the squared error measure

which is amended to

-and the activation function

or or

squashing

functions

o f w xi i
i

n

= −
�

�
�

�

�
�

=
� θ

1

()E t op p p= −
2 ()p

k
p

k
p

k
k

n

E t o= −
=
�

2

1

()f x
e x=

+ −

1

1
()f x

e

e

xx

x=
−
+

= �
�
�

�
�
�

−

−
1
1 2

tanh ()f x x=

-10 0 10

-1

-0.5

0

0.5

1

x

y

-10 -5 0 5 10

-1

-0.5

0

0.5

1

Soft Computing: Neural Networks

36

Backpropagation

make incremental change in the direction
dE/dw to decrease the error.

The learning rule for each node can be derived
using the chain rule...

…to propagate the error back through a multi-
layer perceptron. ∂

∂
E

parameters

er
ro

r

∆w
E

wki

p

kip

= − �η
∂
∂

9/29/2003

19

Page 19

Soft Computing: Neural Networks

37

Back-prop procedure

1. Initialize weights to small random values

2. Choose a pattern and apply it to input layer

3. Propagate the signal forward through the
network

4. Compute the deltas for the output layer

5. Compute the deltas for the preceding layers
by propagating the error backwards

6. Update all weights

7. Go back to step 2 and repeat for next pattern

8. Repeat until error rate is acceptable

Soft Computing: Neural Networks

38

Step 1

1. Initialize weights to small random values

Example:

0.3w12
2

-0.6w11
2

-0.1w22
1

-0.1w21
1

-0.3w12
1

-0.4w11
1

ValueWeight

x 2

w11 2 x 1
O 1

O
1

w12 2
w22 1

w11 1

w21 1

w12 1

3
2

O
2
2

= O
1
1

= O
2
1

-0.1t1
3

0.5t2
2

0.2t1
2

ValueThreshold

9/29/2003

20

Page 20

Soft Computing: Neural Networks

39

Step 2

2. Choose a pattern and apply it to input layer

011
101
110
000

Target outputx1x1

Soft Computing: Neural Networks

40

Step 3

Propagate signal forward through the network

until all outputs have been calculated

For m=0 (input layer), the output is the pattern.

Example:

�
�

�

�

�
�

�

�
= � −

j

mm
ij

m
i j

OwgO 1

x 2

x 1
O = 1/(1+exp(-2*β*(0*(-0.4)+1*(-0.3)+0.2)) 1 w11

1=-0.4
w21

1=-0.3

2
= O = 0

1
1

= O = 1
2
1

t1
2=0.2

9/29/2003

21

Page 21

Soft Computing: Neural Networks

41

Step 4

Compute the deltas for the output layer

by comparing the actual output O

with the target output t

for the pattern p considered

Example:

()[]m
i

p
i

M
i

M
i Odhg −= 'δ

x 2

x 1 O =0.1321
1
3 = O

1
1

= O
2
1

t1

2=-0.1

h1

2=0.2745

() ()m
i

p
i

m
i

m
i Odhf −⋅= 'δ

Soft Computing: Neural Networks

42

Step 5

Compute the deltas for the preceding layers by
propagating the errors backwards

for m=M, M-1, M-2, …

until a delta has been calculated for every unit

()�−− =
n

j

m
j

m
ij

m
i

m
i whg δδ 11 '

9/29/2003

22

Page 22

Soft Computing: Neural Networks

43

Step 6

Use

to update all connections to

1−=∆ m
j

m
i

m
ij Ow ηδ

ij
old
ij

new
ij www ∆+=

Soft Computing: Neural Networks

44

Step Size, Initial Weights

Step size:

too big

too small

variable:

compute error

backpropagate

compute error again

if error bigger, reduce step size (0.5)

otherwise, increase a little (1.1)

Initial weights: randomize (= 0)

er
ro

r

9/29/2003

23

Page 23

Soft Computing: Neural Networks

45

Momentum

If error minimum in long narrow valley,

then updating can happen to zig-zag down the
valley

smoothes weight updating

can speed learning up ∆ ∆w E ww prev= − ∇ +η α

Soft Computing: Neural Networks

46

Overfitting
Error on learning cases

Error on validation cases

trained things that are accidental and unimportant

epoch

er
ro

r

epoch

er
ro

r

9/29/2003

24

Page 24

Soft Computing: Neural Networks

47

Local Minima

There is no guarantee that the algorithm
converges to a global minimum

- check with different initial conditions
(different weights, etc.)

- perturb the system (data) with noise to
improve result

epoch

er
ro

r

Soft Computing: Neural Networks

48

Architectures and other Techniques

Normalize weights

move weights same Euclidean distance

each epoch

Data scaling

Input scaling: allows weights to have

same order of magnitude

Output scaling: let target go between +- 0.9

to avoid saturation

What number of nodes per layer?

How many layers?

9/29/2003

25

Page 25

Soft Computing: Neural Networks

49

MLP Decision Boundaries

A B

B A

A

B

XOR Interwined General

1-layer: Half planes

A B

B A

A

B

2-layer: Convex

A B

B A

A

B

3-layer: Arbitrary

Soft Computing: Neural Networks

50

Radial Basis Function (RBF) Networks

Each node is described by a bell shaped function

where

c i is the center of the curve

Network architecture

x1

x2

y1

y2

Σ

Σ

o
x c

i
i

i

= −
−�

�

�
�

�

�

�
�exp

2

22σ

9/29/2003

26

Page 26

Soft Computing: Neural Networks

51

RBF

Output:

weighted sum

weighted average

linear combination

Location of Center:

Use (fuzzy) k-means clustering

Size of Variance:

Use knn-classifier and take average distance

Soft Computing: Neural Networks

52

XOR, revisited

x y output
0 0 0
0 1 1
1 0 1
1 1 0

9/29/2003

27

Page 27

Soft Computing: Neural Networks

53

RBF and FIS

Consider the radial basis functions:

and a linear combination of the output variables

then the response is equivalent to ...

x

1.0

c1 c2 c3

y a o bi i i= +� �

Soft Computing: Neural Networks

54

Modular Networks

Task decomposition

Local Experts

Fuse information

local expert 1
O1

weigh experts
opinions by gi

Input x
...

ylocal expert 2

local expert n

O2

On

fuse

9/29/2003

28

Page 28

Soft Computing: Neural Networks

55

last slide

